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Abstract— The advanced metering infrastructure (AMI) 
of a smart electrical grid is seen as both a network for 

improving the efficiency of the electrical power system and 

as a potential target for cyber-attackers bent on disrupting 

electrical service. In this paper, we examine how a hijacked 

AMI network might be used to instigate widespread 

blackouts, and the physical barriers that the electrical 

system itself poses to such an attack. To this end, we present 

a simple, but potentially useful, model for gauging the 
quantity of load that an attacker must control for an attack 

to be successful. Conversely, the model suggests a scheme 

for mitigating the attack, but at the cost of decreasing the 

usefulness of smart meters as devices for the legitimate 

regulation of electrical load. 
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1 Introduction 

Smart electric meters, capable of two-way 

communications and having software and hardware to 

enable energy management in real-time, are a major part of 
the advanced metering infrastructure (AMI) of a smart 

electrical grid. These meters have tremendous potential to 

improve the efficiency and reliability of the national power 

system. For example, a washing machine in a household 

with a smart meter could be set to run only when energy is 

cheap. This reduces energy costs for the power consumer 

and reduces the size of demand peaks, which are served 

with expensive, relatively inefficient sources of energy. 

Current plans call for nearly 17 million smart meters to be 

installed in U.S. homes and businesses over the next few 

years. While proponents of a smart grid and, in particular, 

an AMI have touted the potential to improve the electricity 
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system, critics have expressed concerns about the 

susceptibility of AMI meters to cyber-attacks. 

Cyber security practitioners [1]-[5] have claimed that 

smart meters are susceptive to hacking, and thereby are a 

potential enabler of unauthorized access to command and 

control processes that could be abused to disrupt electrical 

service. Such claims are often disputed by engineers that 

operate large electrical power systems. Significantly, the 

vulnerabilities found in smart meters have not been put to 

such a use. 

However, if such an attack were to be carried out, it 

might unfold as follow. The attacker gains control over a 

substantial quantity of load by hijacking a large number of 

smart meters. Using these meters, the attacker creates a 

large imbalance between power used and power supplied by 

switching off the load that he controls. This causes a large 

and sudden change in the frequency of the power system, 

thereby forcing some generators to disconnect from it. By 
repeating this attack several times in the course of a few 

minutes, large numbers of generators may be forced to 

disconnect, thereby instigating a large-scale blackout. 

This scenario is often used as evidence of a systemic 

risk posed by vulnerabilities in smart meters and their 

attendant infrastructure for communication and control. 
Opponents of these claims cite the intrinsic robustness of a 

power system to sudden changes of load. Indeed, the inertia 

of the power system’s generators and the presence of 

automatic controls designed specifically to deal with 

imbalances of supply and demand are a physical barrier to 

successful attack. 

In this paper, we estimate the physical requirements 

that must be met by an attack seeking to disable a large 

power system by the sudden and simultaneous manipulation 

of numerous electrical loads. We further propose that a 

random delay imposed on energy management actions can 

mitigate the most disruptive effects of such an attack. 

Towards this end, we examine two key quantities in such an 

attack: the amount of load controlled by an attacker and the 

swiftness with which it is switched. Our method of analysis 

is illustrated by its application to data published for the 

power grid that serves the western United States. 
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2 Motivation and method of attack 

Among the motives for instigating a computer-based, 

rather than physical, attack against electrical infrastructure 

is the relatively small risk of getting caught. Cyber-attacks 

are notoriously difficult to attribute to a specific source (see, 

e.g., the discussion by Libicki [6]), and so the risks faced by 

a cyber-attacker are typically much less than those faced by 

the instigators of a physical attack. This aspect of a cyber-
attack may make it attractive to malicious actors who want 

to disrupt electrical service but have a low tolerance for risk; 

this may be particular true for potential attackers who would 

never consider carrying out a physical attack.   

There are two basic avenues for a cyber-attack on 

electrical loads: 1) through the meter hardware or 2) through 
a computer that controls metering or other electrical 

management, functions. Attacking the meters would perhaps 

be the most effective. However, such an attack requires both 

known, exploitable flaws in the meter software and a 

capability to exploit that flaw via remote operations on a 

very large number of meters; e.g., by the use of a botnet-

style worm (see, e.g., [7], [8]).  

The other avenue for an attack is via computers (e.g., 

home computers) that interact with and control some actions 

of a smart meter or load. For example, a home energy 

management system that is operated by a personal computer 

may be susceptible to attack via the Internet. By hijacking 

this computer, the attacker may be able to modify the power 

consumption of electrical appliances under its control (see, 

e.g., [9]). It is likely in this case that the computer controls 

only part of the load at a home or business, e.g. the PC may 

be able to remotely turn the furnace on or off, and so such 
an attack vector may be relatively less effective than one 

that targets the meter itself. 

In any case, a significant hurdle that a cyber-attacker 

must overcome is to ensure that the infected devices are 

physically collocated. For an attack to be effective, it must 

be able to disconnect (or otherwise change the consumption 
of power by) loads within a specific electrical power 

system. Hence, all of the hijacked load must reside within 

the geo-physical region served by the targeted power 

system.  

3 Effect of a sudden change of load  

The sudden disconnection of an electrical load is felt by 

a generator as an acute easing of the torque which opposes 
its turning rotor. Automatic controls act to bring all forces 

back into balance by adjusting the production of power at 

the generator to match demand. A sudden reconnection of 

the same load will have the opposite effect, causing the 

generator to feel an acute tug in opposition to its spinning 

rotor. This causes it to slow and, again, automatic controls 

act to bring supply and demand into balance. If, however, 

the rotating speed of the machine drifts too far from normal, 

then automatic protection devices disconnect it from the 

electrical network. This can turn an abnormal event into a 

cascading failure. 

It is conceivable that an attacker in control of a 

sufficiently large number of smart meters will use this 

physical phenomenon to instigate a large blackout. The 

number of meters required, and the precision with which 

their switches must be operated, are determined by the 

physical properties of the generators and the settings of their 

controllers. The main method in this attack is a change in 

load that happens more quickly than the automatic controls 

can respond.  

We use a model derived from the swing equation and a 

simplified speed governor (see, e.g., the power system 

model presented in [10]) to approximate the system-wide, 

average change in frequency of a large electrical power 

system following a sudden change in the real electrical load. 

This model has two parameters for characterizing the 

electrical generation system, both of which can be measured 
(see, e.g., [11], [12]). These are its inertia M and the rate τ of 

its response to frequency excursions. This model also has 

one parameter for describing the change in load; this is the 

fraction   of the base electrical load Pe that is shed.  

The change  of the frequency of the power system 
during the event is related to the changing power Pm output 

by the generators and power Pe demanded by the loads by  

 

 ̇  
 

 
(     (    ( ))) 

 

 ̇   
 

 
                                        (1) 

 
where u(t) is the step function and the model begins in 

steady state with ω(0) = 0 and Pm(0) = Pe.  

Though simple, this model captures the three salient 

features that act unavoidably to oppose an attack relying on 

the manipulation of load. These features are (i) the inertia of 

the generators, which opposes sudden changes in frequency; 
(ii) the speed governors that act to correct an imbalance 

before dangerous changes in frequency are realized; and (iii) 

the rate at which those governors must act, which is 

determined in turn by the generation inertia and the size and 

rate at which the imbalance forms. 

Only the frequency excursion is of interest here; solving 
Eqn. (1) we get  
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which has a maximum amplitude max  at 
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This derivation shows that the maximum frequency 

deviation is proportional to the fraction of load that is 

removed by the step change. Using 
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Equation (3) can be written as 
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and given measurements of  and      for an observed 

event,   can be calculated. 

If      is greater than the maximum excursion 

tolerable by the power system (again, a quantity which is 

known or can be estimated) then the system is at risk. Such 

a sudden change in load can be prevented in at least three 
ways. 

First, hardware in the meter itself can impose a random 

delay and thereby force a ramped response from the 

population of meters. If the rate of response is sufficiently 

slow, then it will give automatic controllers sufficient time 

to safely adjust the power output of their generators. If 
implemented in trustworthy hardware, this protection 

mechanism is effective regardless of how the attack is 

instigated; that is, it cannot be disabled by software faults or 

computer-based attacks. 

Second, business logic, implemented in software, can 

monitor for unsafe load changes and refuse to execute them, 
force the change into safe limits, ask the operator for 

confirmation, or all three. This kind of process control 

supplements other security measures which seek to ensure 

that requests come only from authorized operators, that 

worms and viruses do not infect the smart meters and enable 

malicious operation of the electrical switch, and to prevent 

other similar kinds of contingencies. However, the software 

that implements the protective business logic is itself subject 

to cyber-attack, and so its effectiveness as a security 

measure cannot be guaranteed. 

Third, AMI installations could be deliberately limited in 

their scope. Large-scale penetration of AMI would be much 

more difficult given isolated AMI networks that employ 

different types of metering hardware, operating systems, and 

networking protocols. This is probably infeasible as a long 

term security solution, but could serve as a risk mitigation 

strategy while pilot deployments are rolled out. A staged 
deployment will provide opportunity for a utility to discover 

security problems, gain valuable operating experience in 

this respect, and to do so before the population of advanced 

meters reaches a threshold sufficient for causing wide 

spread disturbances.  

In the next section, we address the first approach as a 
practical means for reducing the risks of an AMI being 

misused as a tool for the widespread disruption of the 

electrical service. Specifically, we show with an analytical 

model how imposing a random delay in the meter mitigates 

the impact of a cyber-attack on the power system. 

4 Mitigating strategy 

The maximum frequency deviation of the power 

system,     , due to a sudden change in load can be 

reduced by enforcing a random time delay between a 

request that the smart meter opens or closes its switch and 

the moment at which the action is actually carried out. The 

switching delay must be determined at random for each 

request, and the delay implemented by a device not 

accessible in any way via remote access to the meter. If a 
hardware delay can prevent a sudden change in electrical 

load, automatic speed controls in the generators can prevent 

a dangerous jump in ω. 

This security control is modeled in a way similar to the 

attack in (1), but with the step u(t) replaced with the ramp 

β( ) as 
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where β( ) is the ramp function  
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and γ > 0 is the duration over which the load change occurs. 

This is illustrated in Fig. 1.  

Solving Eqns. (6) and (7) for  gives 
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If the power system is stable in the sense that it will 

ultimately damp out any excursion (and this must be the 

case while the power system is operating) then it is 
sufficient to consider just the first swing (i.e., half period); 

subsequent swings will have decreasing amplitudes.

 From this perspective, there are two possibilities. If the 

interval γ is sufficiently large, then the first swing occurs 

while t < γ. Its magnitude is 
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Fig. 1.  Simulated ramp response of 1000 meters with 

enforced delays selected at random from [0,1]. 

 

and this limit is reached at 
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In this case, the rate of the response of the generators to the 

imbalance counteracts the magnitude and suddenness of the 

change in load. 

More desirable for the attacker is that γ be small, in 

which case inertia carries the system through its first swing. 

This is the case of practical interest, for which ω is bounded 

by 
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and this limit is reached at 
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Indeed, if γ is very small, then Eqn. (11) can be 

approximated by 

 

    (   )  
   

 √  
                               (13) 

 

Thus, a conservative limit for ωmax is given by 
 

1. Eqn. (11) while γ is less than the tmax in Eqn. (12), 

2. Eqn. (11) from γ equal this tmax until Eqn. (11) is 

less than Eqn. (9), and 

3. Eqn. (9) afterwards. 

 

5 Illustration 

To illustrate this method of analysis, we estimate the 

combinations of γ and α required to cause particular 

frequency excursions in the western United States. The data 

used for these calculations is derived from a June 14 event 

in the western U.S. (as governed by WECC; see [12], 

especially Figures 1 and 2). In that event, 4.589 GW of 

generation was lost resulting in a 0.4 Hz frequency 

excursion. Chassin et. al. measured the system inertia 

during this event as 17.8 GW.sec2. The base load Pe for this 

specific event is not reported in their paper, but 90 GW is 

the midpoint for the range of values reported and using this 

for Pe gives a notional 5% change in load. With this data 
and Eqn. (13), the control constant τ is calculated as 0.0224. 

Fig. 2 illustrates the conservative limit for ωmax using 

the above data. When the ramping time is small, the size of 

the change in load is the dominant factor. This observation 

is consistent with the approximation in (13). The size of the 

excursion can be controlled, however, by lengthening the 
ramping interval; using the data above, the magnitude of the 

excursion falls quickly for γ > 1 second. 

This observation suggests that the impact of hijacked 

loads on the power system may be mitigated with an 

enforced ramping time. One place to enforce this is in the 
meters themselves; an inexpensive circuit may be 

introduced into the electronics that selects a delay uniformly 

in [0, γ] for that meter’s switch. The aggregate effect of this 

delay is described by (7), and if γ is large enough then the 

population of smart meters adjusts the total load Pe at a 

tolerable rate. This scheme prevents an attacker from 

causing an unacceptably large change in frequency by 

placing a physically enforced limit on his actions. 

Moreover, if this delaying circuit is installed when the meter 

is manufactured then its protective function comes at a very 

small price. 

Though this scheme prevents rapid changes in load at 

the meters, it does not prevent a similar type of attack at 

other points in the electrical system; e.g., sub-stations 

typically have a capability to disconnect large amounts of 

load for the purposes of emergency load shedding. 

Moreover, it is not known whether the risk posed by an 
attack on smart meters justifies the proposed limit on their 

use: rapid control of load via smart meters is desirable when 

it is used to regulate (rather than disrupt) frequency. 

6 Conclusions 

Risk that may be posed by smart meters is of particular 

concern because these meters, unlike a control center or 

substation, are readily accessible to an attacker. Smart 

meters are easily purchased, giving a potential attacker the 
opportunity to study these devices in detail; and smart 

meters that are installed in a home or business may be 



 

linked directly to the home or business computer network. 

Indeed, this feature is being used in some energy 

management systems, and it raises the possibility of 

hijacking loads via the Internet. 

The model developed in this paper is a tool for 

estimating the impact that hijacked loads may have on an 

electrical power system. Though the model is simple and the 

calculated estimate necessarily rough, the resources required 

to construct this estimate are minimal and can be obtained 

relatively easily (again, see [11], [12]). The model makes 

concrete the argument that inertia and speed controls are a 

barrier to causing widespread disruption of electrical service 
by the use of hijacked loads. The technological 

sophistication and engineering resources required to 

overcome this barrier remains a topic for future analysis. 

 

 

 

Fig. 2. Estimate of the maximum frequency excursion as a 

function of the load ramping time. 
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