
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Ensemble Learning in Fixed Expansion Layer
Networks for Mitigating Catastrophic Forgetting

Robert Coop, Student Member, IEEE, Aaron Mishtal, Student Member, IEEE,
and Itamar Arel, Senior Member, IEEE

Abstract— Catastrophic forgetting is a well-studied attribute of
most parameterized supervised learning systems. A variation of
this phenomenon, in the context of feedforward neural networks,
arises when nonstationary inputs lead to loss of previously
learned mappings. The majority of the schemes proposed in the
literature for mitigating catastrophic forgetting were not data
driven and did not scale well. We introduce the fixed expan-
sion layer (FEL) feedforward neural network, which embeds
a sparsely encoding hidden layer to help mitigate forgetting
of prior learned representations. In addition, we investigate
a novel framework for training ensembles of FEL networks,
based on exploiting an information-theoretic measure of diversity
between FEL learners, to further control undesired plasticity. The
proposed methodology is demonstrated on a basic classification
task, clearly emphasizing its advantages over existing techniques.
The architecture proposed can be enhanced to address a range
of computational intelligence tasks, such as regression problems
and system control.

Index Terms— Catastrophic forgetting, nonstationary inputs,
sparse encoding neural networks.

I. INTRODUCTION

The problem of catastrophic interference (also referred to
as catastrophic forgetting [9]) in artificial neural networks
has been studied over two decades by researchers from many
disciplines, such as machine learning, cognitive science, and
psychology [19], [24]. Many real-world applications, such as
financial time series analysis and climate prediction, involve
data streams that are either strictly nonstationary or can be con-
sidered piecewise stationary. It was shown that in mammals,
long durations of time between observations of stationary
patterns can lead to an excessive tendency to form associations
between sensory inputs and desired outputs (abnormal potenti-
ation) often at the expense of weakening existing associations
[11], [16]. In parameterized supervised learning systems (like
connectionist architectures), catastrophic interference is the
process by which a network forgets learned patterns upon
being presented with new patterns for a sufficiently long
period. In such nonstationary settings, we can expect a neural
network to have an inherent learning capacity determined by
the number of weights and neurons it contains. When this

Manuscript received May 16, 2012; revised April 25, 2013; accepted
May 16, 2013. This work was supported in part by the Intelligence Advanced
Research Projects Activity via Army Research Office under Grant W911NF-
12-1-0017, and by NSF under Grant CCF-1218492.

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Tennessee, Knoxville, TN 37916 USA (e-mail:
coop@eecs.utk.edu; amishtal@eecs.utk.edu; itamar@eecs.utk.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2013.2264952

capacity is reached, learning new information will gradually
interfere with a network’s ability to recall prior representations.

Catastrophic interference is, however, commonly not a result
of a network reaching its learning capacity. Instead, once the
network is trained on new patterns, or is no longer being
adequately presented with inputs drawn from a prior obser-
vation distribution, drastic information loss occurs. The new
information catastrophically interferes with learned represen-
tations even though there is a sufficient learning capacity. Such
scenarios are commonly encountered when nonstationary input
streams are presented to the network [5].

Many approaches with the goal of diminishing the impact
of catastrophic interference were proposed in the literature,
with varying levels of success [1], [2], [7], [12], [13],
[17], and [25]. The vast majority of the schemes proposed
do not pertain to online learning, but are rather based on
batch-learning processes. In addition, most of the techniques
require extensive memory resources, as they store prior
configurations of the network as means of latching older
representations. This paper proposes a novel approach for
mitigating catastrophic forgetting by augmenting multilayer
perceptron (MLP) networks with an additional sparsely
encoded hidden layer specifically designed to retain prior
learned mapping of inputs to outputs. Learning is completely
incremental and minimal storage requirements are imposed.

The rest of this paper is structured as follows: Section II
reviews existing solutions for mitigating catastrophic forget-
ting. In Section III, the fixed expansion layer (FEL) network
is introduced. Section IV describes some improvements to
the FEL approach using sparse coding. Section V proposes
a method for improving the estimation problem in ensembles
of FEL learners whereas in Section VI, simulation results for
several catastrophic interference tasks are described. Finally,
Section VII summarizes the conclusion.

II. MITIGATING CATASTROPHIC FORGETTING IN

NONSTATIONARY SETTINGS

Mainstream exploration of the problem of catastrophic inter-
ference is within the domain of autoassociative pattern learn-
ing, which has not specifically addressed problems inherent
with more general function approximation [20]. The following
outlines the most commonly used schemes proposed in the
literature.

A. Rehearsal Methods

Rehearsal methods are among the first approaches aimed at
addressing the problem of catastrophic interference. Two such

2162-237X/$31.00 © 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

methods are as follows: 1) the rehearsal buffer model [24]
and 2) sweep rehearsal [25]. Each method attempts to retain
information about formerly learned patterns by maintaining a
buffer of previously observed inputs. These buffered patterns
are then periodically used for training during the learning of
subsequent patterns. Such early methods mitigated the effect
of catastrophic interference somewhat, but required persistent
storage of learned patterns and introduced challenges with
respect to the correct balance between new patterns and
buffered ones. Therefore, substantial fine tuning of parameters,
such as buffer sizes and replay frequency, are required.

1) Rehearsal Buffer Model: The rehearsal buffer model
operates as follows: assuming there are M patterns to be
learned, we create a rehearsal buffer containing a small subset
of m patterns (e.g., initially the first pattern through the mth
pattern, with typical values of m being around 4). Next, the
neural network is trained over each pattern in the buffer.
Then, the network is presented with each pattern in the buffer
sequentially, and the entire buffer is looped over N times. The
constant N is specified by the experimenter; there is no explicit
relationship between M and N . Upon completing N loops
through the buffer, the first item in the buffer is replaced by the
subsequent pattern to be learned. Therefore, the buffer would
first contain items in the range [1, m], the training process
loops over these items N times, then the buffer is updated to
include items in the range [2, m + 1]. This process continues
until all M patterns are learned.

2) Sweep Rehearsal: Sweep rehearsal is similar to the
rehearsal buffer model, however it uses a dynamic training
buffer rather than a fixed one. Given M patterns and a buffer
size of m patters, we must first learn at least (m − 1) patterns
before the dynamic buffer comes into play. Once a sufficient
number of patterns are presented to the network (with a pattern
considered to be learned when trained until the estimation
error is below a given threshold), the process of learning a
new pattern proceeds as follows. Let the new pattern to be
learned be denoted as xi . The training buffer is created by
combining pattern xi with (m − 1) previously learned patterns
(selected at random), and the network is trained by presenting
each pattern in the buffer once. Where the rehearsal buffer
model would sweep through this same buffer N times, sweep
rehearsal, however, constructs a new buffer containing xi and
(m − 1) randomly selected from previously learned patterns.
This is performed during each epoch, where an epoch is one
presentation of each pattern in the buffer. A new buffer is cre-
ated and used for training until pattern xi is considered learned,
at which point the process is repeated for pattern xi+1, and so
on. In practice, sweep rehearsal delivers improved performance
when compared with the rehearsal buffer model [25], however
it still requires substantial tuning and is inherently limited in
its capacity to retain long-term memory.

B. Pseudorehearsal Methods

Whereas rehearsal methods attempt to retain learned infor-
mation by storing and rehearsing previously learned pat-
terns, pseudorehearsal methods attempt to latch onto learned
information without the requirement of pattern storage [26].
Instead of using previously learned patterns for rehearsal,

pseudopatterns consisting of random input values are gen-
erated periodically during training. The pseudopattern is fed
into the network and the network’s output is recorded. After
some number of subsequent training iterations, a previously
generated pseudopattern is selected for pseudorehearsal. The
pseudopattern is fed into the network, and the previously
recorded output is used as a training target.

Pseudorehearsal can use the rehearsal buffer model or sweep
rehearsal as the base learning mechanism. Random pseudopat-
terns are, however, used instead of actual patterns that were
previously learned. To use pseudorehearsal with the sweep
rehearsal approach, we would construct our sweep buffer by
selecting the nth pattern to be learned and generating (m − 1)
pseudopatterns [as opposed to randomly selecting (m − 1)
previously learned patterns] before each epoch. During each
epoch, the network is trained over the sweep buffer once. Then,
we construct another sweep buffer containing the nth pattern
and newly generated pseudopatterns. This process repeats until
the nth pattern is learned sufficiently, then, repeat using the
(n + 1)th pattern, and so on.

Consider, the problem of learning binary patterns with an
autoassociative neural network. The training data is given as
input–output pairs (xi , yi), where xi is the i th input and yi

is the desired i th output. The function to be approximated
is f (xi) = yi . For the autoassociative problem, xi = yi and
f (·) are the identity function. The function approximation
performs by the autoassociative neural network h(xi) = ŷi ,
where ŷi is the output of the neural network (and we desire
h(xi) = ŷi ≈ yi).

This scheme involves generating a pseudopattern pi by
randomly setting each bit to either zero or one with equal
probability. We compute the output of the network over this
pseudopattern and store the result as qi (i.e., we compute
h(pi) = qi). For pseudopatterns, instead of training to achieve
the goal qi ≈ pi , we use the value of qi as the actual training
target. Therefore, our sweep buffer would contain our pattern
to be learned, (xi , yi) as well as a number of pseudopatterns
(pi , qi).

These pseudopatterns serve as approximate snapshots of
the network’s internal state at some time during the training
process. As training proceeds, the network’s internal state is
being adjusted to recognize the currently viewed patterns.
When pseudorehearsal is performed, the network’s internal
state is essentially being readjusted to be more like the
snapshot of its prior internal state. This adjustment causes the
network to be more likely to retain prior information, thus
combating the catastrophic interference effects. The process
of generating pseudopatterns and periodically retraining over
these pseudopatterns, however, increases the storage and com-
putational requirements of the system. In addition, analysis
suggests that, in some networks, the effectiveness of pseudore-
hearsal degrades when used with low-dimensional input or
input patterns that are nearly (or completely) orthogonal [7].

C. Dual Methods

Dual methods address catastrophic interference by means of
attempting to separate that which is being learned from that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

COOP et al.: ENSEMBLE LEARNING IN FIXED EXPANSION LAYER NETWORKS FOR MITIGATING CATASTROPHIC FORGETTING 3

which was already learned; these methods are characterized
by the explicit representation of short-term and long-term
memory. Dual-weight methods [13], [17] maintain two sets
of weights for a single-network architecture, whereas dual-
network methods [2], [10], [12] use entirely separate neural
networks. Both approaches use one resource (a set of weights
or a network) for storing long term, slowly changing infor-
mation, and use the other resource for storing short-term,
quickly changing information. While these type of methods are
shown to be somewhat effective, the computational and storage
requirements are drastically increased; often these algorithms
additionally perform rehearsal or pseudorehearsal (e.g., [10],
[12], [13]).

D. Activation Sharpening

Activation sharpening is inspired by the belief that
catastrophic forgetting is a consequence of the overlap of
pattern representations within the neural network and can
be addressed by reducing such overlap [8]. The goal of
activation sharpening is to gradually develop semidistributed
representations of patterns in the hidden layer of the network
by causing neurons within the hidden layer to latch onto
specific regions of the input space. This approach modifies
the traditional feedforward process; the input pattern is fed
forward and the activation of nodes in the hidden layer is
sharpened by increasing one or more of the hidden nodes
with the largest activation values and decreasing the activation
values of all the other hidden nodes. The difference between
the original and sharpened activation values is immediately
backpropagated to the input-hidden weights (as if it is an error
signal) to train the network to produce a sharpened activation
in the future. After this occurs, the input is fed forward
and the error backpropagated as usual. This method does not
significantly increase the memory requirements of the network,
but it does result in a 50% increase in the computational
requirements because of the additional half-backpropagation
procedure during each iteration. The additional backpropa-
gation procedure becomes increasingly expensive to perform
as the neural network grows in size, which has scalability
implications.

III. FEL NEURAL NETWORK

The motivation behind the FEL neural network is sim-
ilar to that of activation sharpening, with the exception
that FEL inherently supports an incremental, online learning
process, and exploits sparse encoding to latch onto previously
learned input/output mappings. The FEL network addresses
the problem of representational overlap in a feedforward neural
network by exploiting an augmented MLP architecture that
includes the addition of an expansion hidden layer to the
network, as shown in Fig. 1. The weights for this layer are
fixed during network initialization, with weight values chosen
such that the dense signal contained in the hidden layer is
expanded into a more sparse signal represented by the FEL.
In particular, some of the fixed weights between the hidden
layer and FEL are excitatory while others are inhibitory.
Sparsity, thus serves as means of mitigating forgetting of

Fig. 1. FEL neural network architecture. A sparse-encoded hidden layer
resides between the hidden and the output layers.

Fig. 2. Feedforward signal flow in the FEL neural network.

older information by selectively gating weight update signal
propagation through the network.

During the feedforward phase, the FEL neurons are trig-
gered to present a consistent sparse representation of the
input pattern to the output layer (see Fig. 2). The sparsity of
the FEL weights, combined with the triggered FEL neurons,
protect the input-to-hidden layer weights from portions of
the backpropagation error signal (see Fig. 3), thus preventing
the network weights from changing drastically when exposed
to new information that mitigates the effects of catastrophic
interference.

In this paper, while MLP networks are treated, the FEL
can be used by many other neural network architectures and
training algorithms. Employing the FEL requires the additional
step of fixed weight initialization at the time of network
creation and defining the neural triggering conditions, as
described in the following.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Error back-propagation in the FEL neural network.

A. Weight Initialization

The weights between the hidden layer and the FEL (Fig. 1)
are set when the neural network is created and remain
unchanged during the learning process. These FEL weights
must facilitate expansion of the signal contained in the activa-
tions of the hidden layer neurons into a sparse representation
by the FEL neurons. To achieve this, each FEL neuron is only
connected to a subset of neurons in the hidden layer. If each
hidden neuron are fully connected to each FEL neuron (as in
traditional feedforward neural network weighting), each FEL
neuron’s activation would be a function of the full hidden
layer signal. Therefore, the FEL layer’s signal would be just
as dense as that of the hidden layer. Therefore, we select only
a subset of the hidden layer neurons to contribute to each FEL
neuron.

To initialize the FEL weights, we specify the number of
hidden layer neurons that are excitatory with respect to each
FEL neuron’s activation (NC) and the number of hidden
layer neurons that will inhibit the activation of each FEL
neuron (NH). For each FEL neuron, we randomly select NC

hidden neurons and assign these neurons a positive weight
value (vC) of 1. Next, NH inhibitory neurons are selected
and assigned negative weight value (vH) of −vC/NH . Selec-
tion of excitatory and inhibitory neurons is performed such
that each neuron in the hidden layer will excite and inhibit
the same number of FEL neurons, thus ensuring balanced
mapping of signals between the two hidden layers of the
network.

B. Neuron Triggering

During training, only a small subset of the FEL neurons
(i.e., the triggered neurons set) have nonzero activation values.
Any hidden layer neuron connected to a triggered FEL neuron
will receive a corrective training signal through the back-
propagation process and therefore update all of its input layer
weights. If all FEL neurons are to be triggered, then all

hidden neurons would receive a corrective training signal, and
therefore all input-to-hidden layer weights would be updated
during each training epoch. In contrast, in the proposed FEL
network only some number (NA) of neurons are triggered—
specifically those that have the highest activation values.
In addition, a number (ND) of neurons that have the lowest
activation values are activated. Intuitively, this can be thought
of as selecting the neurons that strongly agree or disagree
with the hidden layer signal. The degree of agreement or
disagreement is determined by the excitatory and inhibitory
weights between the hidden layer neurons and the FEL neu-
rons. These excitatory and inhibitory triggered neurons have
their activation values set to a positive (v p) or negative (vn)
constant, respectively, and all other FEL neurons have their
activation values set to zero.

Through setting the activation levels of the triggered FEL
neurons to specific values (as opposed to using their actual
activation values), we are effectively limiting the information
that can be propagated between the hidden layer neurons and
output layer neurons. In effect, we are partitioning the learning
process into two parts as follows: 1) the hidden layer weights
are adjusted to create the sparse representation that will be
most informative to the output layer; and 2) the output layer
weights are adjusted to map the sparse FEL signal into an
accurate representation at output layer.

C. Ensembles of FEL Networks

When examining the results from experiments with a single-
FEL network, it is observed that when FEL networks exhibit
some degree of forgetting, they tend to do so at different
regions of the input space. This observation suggests that a
sufficiently diverse set of FEL networks, trained as an ensem-
ble of learners, may effectively overcome the limitation of any
single-FEL network. Ensemble learning has been extensively
studied in recent years, with many well-understood algorithms,
such as Boosting [22] and Bagging [3], being proposed,
as well as methods designed for nonstationary environments
[21]. The key idea behind ensemble learning is to establish
a set of trained learners such that their expected aggregate
decision is more accurate than that of any individual learner.
For this desired property to hold, the learners need to be
diverse.

A particular family of ensemble training algorithms, which
can be easily exploited in the context of neural network
learners, is negatively correlated learning (NCL) [27], [28].
These algorithms involve modifying the cost function of each
learner so as to promote diversity between the ensemble
members. In particular, the mean squared error (MSE) cost
function is augmented by an additional term that reflects a
negative correlation between each learner’s error (i.e., differ-
ence between target and output) and the average error of the
ensemble. This inherently forces differentiation between the
learners thus, yielding an improved overall level of accuracy.
While NCL is a solid means of guaranteeing diversity, it is not
optimized for classification problems. Section V outlines an
alternative, information-theoretic cost term, that offers richer
diversity between the learners.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

COOP et al.: ENSEMBLE LEARNING IN FIXED EXPANSION LAYER NETWORKS FOR MITIGATING CATASTROPHIC FORGETTING 5

D. Computational Complexity and Limitations

The computational complexity of the FEL algorithm does
present some additional computational and memory require-
ments. During the feed-forward step, an additional computa-
tion must be performed for the neuron triggering; this can be
completed by sorting the FEL neurons by activation value.
The FEL layer itself requires some additional memory for
storage. This additional storage requirement is, however, neg-
ligible when compared with the rehearsal and pseudorehearsal
requirements for storing arbitrary numbers of patterns (or
pseudopatterns).

IV. IMPROVING THE FEL ALGORITHM USING A SPARSE

CODING APPROACH

Sparse coding can be used as an improved method for
determining the FEL activation neurons and their values. In
such framing, the activations of the hidden layer denote the
dense signal, the activations of the expansion layer represent
the sparse signal, and the FEL weights act as the basis for the
transformation. We seek to minimize the L1 norm of the FEL
neurons while at the same time retaining key information from
the hidden layer neurons. This is equivalent to the following
optimization formulation:

minimizex f (x) ≡ ||y − Ax2|| + γ ||x ||1 (1)

where y is the activation of the hidden layer, A is the
FEL weight matrix, x is the FEL activation (over which the
minimization is performed), and γ is a penalty constant that
acts to balance the desire for a sparse FEL activation and
retention of information from the hidden layer.

This problem can be efficiently solved using the feature-
sign search algorithm introduced in [15]. Equation (1) can
equivalently be written as follows:

minimizex f (x) ≡ ||y − Ax2|| + γ

N∑

i=1

|xi | (2)

where N is the number of elements in x . If we know the
signs of the elements in x , then we can replace each of the
terms |xi | with either xi (if xi > 0), −xi (if xi < 0), or
0 (if xi = 0). Considering only nonzero coefficients, this
reduces (2) to a standard, unconstrained quadratic optimization
problem (QP), which can be solved analytically and efficiently.
The feature-sign search algorithm tries to search for the signs
of the coefficients xi ; given a guess about the signs of these
coefficients, the resulting unconstrained QP can be efficiently
solved. The algorithm systematically refines the guess if it
turns out to be initially incorrect.

This algorithm operates by maintaining an active set of
potentially nonzero coefficients in x and the sign (positive or
negative) of these values; all other members of x are assumed
to be zero. Given a guess about the current active set and
corresponding signs, an analytical solution to the minimization
can be computed. With the latter, we can improve the guess
and repeat the process until a termination condition is met.
Each such step reduces the objective function f (x), and the
process is guaranteed to converge to the optimal solution. The
algorithm is shown in Table I.

The framing of the FEL network within the sparse cod-
ing domain and the application of the feature-sign search
algorithm lead to significant advantages. Through applying
this approach, we are able to eliminate eight constants
(NC , NH , vc, vh , NA, ND , v p, vn), and replace these with a
single constant (γ). Beyond offering a more firm theoretical
grounding to the FEL approach, this improvement results in
significantly higher accuracy over the original approach, as
discussed in Section VI.

V. ENSEMBLES OF FEL NETWORKS

A. Jensen–Shannon Divergence

The Jensen–Shannon divergence (JSD) [18] provides an
information-theoretic measure of the similarity between two
probability distributions. Given two discrete distributions P
and Q, their JSD is given by

JSD(P ‖ Q) = 1

2
DKL(P ‖ M) + 1

2
DKL(Q ‖ M) (3)

where DKL(P‖Q) is the Kullback-Leibler divergence between
P and Q

DKL(P‖Q) =
∑

i

P(i) ln
P(i)

Q(i)
(4)

and M is the mixture distribution defined by

M = 1

2
(P + Q). (5)

Further, the quantity
√

J SD(P ‖ Q) is a metric [6] that can
serve as a diversity measure between two ensemble members.

When a neural network is used for classification and has
several output nodes, each node can be viewed as representing
a level of confidence that the given input belongs to that class.
We can force the network to produce a discrete probability dis-
tribution over the classes that corresponds to these confidence
levels by normalizing its outputs via the softmax function

h̄ j k(xi) = exp(h jk(xi))∑N
l=1 exp(h jl(xi))

(6)

where h jk(xi) is the kth output of ensemble member j in
response to input xi , and the summation is performed over
each dimension of the ensemble member’s output (i.e., N is
the number of outputs for the j th ensemble member). This
will map the outputs to points in a probability space such that
their sum is equal to one. It will also cause relatively large
output values to retain more of the probability mass.

Within the context of a neural network ensemble with
network outputs normalized as outlined above, we can use
the JSD metric as a measure of diversity between individual
network hypotheses. In addition, by maximizing the JSD
value between a given network’s output and the ensemble
average, we can increase the diversity within an ensemble.
To accomplish this, we replace the traditional network error
function with a convex sum between the network error and
the negative square root of the JSD between its normalized

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

FEATURE-SIGN SEARCH ALGORITHM [15]

output and the normalized ensemble average, which yields the
following new error (cost) function

e jk(xi) = (1 − γ)(yik − h jk(xi))
2

− γ

√
JSD(h̄ j (xi) ‖ H̄(xi)) (7)

where H̄(xi) is the softmax-normalized output of the entire
ensemble, yik is the kth target output, and 0 < γ < 1 is a
constant.

The derivative of this additional term with respect to a
particular (prenormalized) network output is

∂e jk

∂h jk
= −

{
(1 − γ)(yik − h jk(xi))

+ α j k

[
(1 − h̄ j k(xi)β j k −

∑

l �=k

h̄ j l(xi)β j l

]}
(8)

where

α j k = h̄ j k(xi)√
2JSD(h̄ j (xi) ‖ H̄(xi))

(9)

and the terms β j k and β j l are given by

β j n = ln

(
2h̄ jn(xi)

h̄ jn(n) + H̄n(xi)

)

+ 1

N
ln

(
2H̄n(xi)

h̄ jn(n) + H̄n(xi)

)
(10)

where n in β j n is replaced by either k or l, depending on
whether we are referring to β j k or β j l (as specified in 8).
The choice of γ determines the balance between the two
goals of the cost function, such as minimizing the MSE
(i.e., approximating a maximum likelihood estimator) while
also promoting diversity between the learners.

B. Estimating Classification Confidence

The output of each learner in an ensemble can be viewed
as a point estimator, with no explicit information about the
uncertainty of the estimation provided. If each learner are to
produce an estimate of its deviation from the target (i.e., a
reflection of its confidence interval) for each output, it would
be possible to weight the learners inversely proportional to
their estimated error such that the more confident networks
will weigh more than the less confident ones. The use of
FEL networks in estimating error intervals is further moti-
vated by their inherent ability to retain long-term memory,
thus improving their error estimation. In approximating an
N-dimensional function, we also require each neural net-
work to estimate its own deviation from the target for
each output, such that the output of a learner is as
follows:

h j (xi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ(j)
i1

ê j1(xi)

ŷ(j)
i2

ê j2(xi)
...

ŷ(j)
i N

ê j N (xi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where h j is trained with the goals that ŷ(j)
i ≈ ŷi and the

absolute deviation is used as the confidence target, such that
ê j k(xi) ≈

∣∣∣yik − ŷ(j)
ik

∣∣∣. A similar framework is studied in the
context of an ensemble of Bayesian learners [23].

Using this methodology, we can set w j k , the weight
assigned to the kth output of the j th ensemble member
proportional to its estimated absolute error. As such, we
have w j k ∝ ê j k(xi)

−1, which will lower the overall error

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

COOP et al.: ENSEMBLE LEARNING IN FIXED EXPANSION LAYER NETWORKS FOR MITIGATING CATASTROPHIC FORGETTING 7

in H as long as our estimation of e jk(xi) is reasonably
accurate. Hence, the key to this weighting scheme surpassing
the accuracy of simply averaging the learner’s outputs is that
a sufficiently high correlation coefficient be observed between
the estimated absolute errors and the actual ones.

Calculating w j k from ê j k(xi) is done by taking a Boltzmann
weighted mean over all the error estimates for each ensemble
member, calculated as follows

w j k =
exp

(
− ê j k(xi)

τ

)

∑N
l=1 exp

(
− ê j l(xi)

τ

) . (12)

VI. SIMULATION RESULTS AND ANALYSIS

We perform simulations to compare the ability of the
FEL network to resist catastrophic forgetting in comparison
with several other algorithms. We study the FEL network in
isolation as well as in the context of ensemble learning on
several different tasks.

A. Traditional Catastrophic Forgetting Task (Autoassociative
Binary Pattern Reconstruction)

1) Task Description: For this task, we compare FEL net-
work performance to two of the commonly used approaches to
mitigation of catastrophic forgetting. We also show the perfor-
mance of a standard MLP feedforward neural network for ref-
erence. Mainstream exploration of the problem of catastrophic
interference is within the domain of autoassociative pattern
learning [20]; this task compares the ability of a network
to retain previously learned information after learning new
information.

The autoassociative binary pattern reconstruction test is
performed as follows. Initially, the network is trained over a set
of 20 patterns, where each pattern consists of 32 binary values.
The goal of the network is to recreate the input provided; the
network has 32 real-valued outputs that do not get rounded.
The network is trained over all 20 patterns until the MSE
for the set is less than 0.06. Once the network has learned
the 20 base items, we present a new pattern to the network.
The network is trained once using this intervening item, and
we then measure the MSE over the original set of base items
to determine how much of the original information is retained.

2) Networks Tested: We evaluate the FEL neural network
against a standard MLP feedforward neural network, a network
using activation sharpening, and a network using pseudore-
hearsal. All networks have 32 input neurons, 16 hidden layer
neurons, and 32 output neurons. For activation sharpening, the
two hidden layer neurons with the largest values are sharpened
by a factor of α = 0.001. Pseudorehearsal is performed
by generating 32 pseudopatterns after original training over
the binary patterns. Every time an interleaving pattern is
learned, a random pseudopattern is selected and presented for
training.

In the FEL neural network, 128 neurons are used in the
sparse (fixed) layer. Each FEL received inputs from half of
the hidden layer nodes (i.e., NC = 4 and NH = 4), with

TABLE II

PATTERN RECONSTRUCTION ACCURACY FOR THE TRADITIONAL

CATASTROPHIC FORGETTING TASK

Fig. 4. Pattern reconstruction accuracy comparison for the traditional
catastrophic forgetting task. Each line represents the mean classification
accuracy, with the shaded proportion representing the 95% confidence interval.

excitatory weights of vC = 1 and inhibitory weights of vH =
−0.25. For the neuron triggering, the NC = 4 neurons with
the largest activation value and the NH = 1 neuron with the
smallest activation value are used. The positive trigger value
is v p = 0.5 and the negative trigger value is vn = −1.

3) Simulation Results: Each network is used in 100 inde-
pendent test runs, and the results used to determine the mean
accuracy, standard deviation, and the 95% confidence interval
for the mean accuracy.

A plot of these values is shown in Fig. 4, with some
detailed results shown in Table II. The FEL network performs
significantly better than the standard MLP network and the
network using activation sharpening and is slightly better than
the network using pseudorehearsal. These results show that
the FEL network performs well in the domain typically used
for testing catastrophic forgetting.

B. Single-Learner Nonstationary Gaussian Distribution
Classification Task

2-D inputs are drawn from four Gaussian distributions,
where each has a different mean. The process involves per-
forming a total of 50,000 training iterations, followed by
1000 testing iterations. A neural network is given the two-
dimensional input (x and y values) as input, and produces
a 4-D output representing the posterior distribution over the
classes. This problem is considered trivial when the sample

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 5. Classification accuracy comparison for the single-learner nonstation-
ary Gaussian distribution classification task. Each line represents the mean
classification accuracy, with the shaded proportion representing the 95%
confidence interval. Nonstationary percentage: the percent of total training
iterations that are performed using only samples drawn from the primary
clusters.

distribution is fixed and does not change during the entire
training period. All algorithms evaluated are able to achieve
100% accuracy under such conditions.

When nonstationary conditions are, however, assumed, the
performance of most algorithms degrade. To study each algo-
rithm’s ability to mitigate catastrophic interference, the sample
distribution varies over the training period such that samples
are presented from all four Gaussian clusters during the initial
phase of the training process, followed by a duration of time
in which samples are drawn only from two of the Gaussian
clusters (i.e., the primary clusters). During this latter phase of
the training, no samples drawn from the other two Gaussian
clusters (i.e., the restricted clusters) are presented. Testing is
still performed over both the primary and the restricted clusters
with the goal being to determine whether or not the network is
capable of retaining information about the restricted clusters
upon being presented with multiple samples drawn only from
the primary clusters. The proportion of training iterations
that pertain to the primary clusters (i.e., the nonstationary
percentage) is adjusted to measure how well each algorithm
performed under varying amounts of interference.

Networks are tested using the same parameters as in the
previous section (using two input and four output nodes).

For each value of the nonstationary percentage, 100 inde-
pendent test runs are performed for each algorithm, and the
results used to determine the mean accuracy, standard devia-
tion, and the 95% confidence interval for the mean accuracy.

A plot of each network’s accuracy is shown in Fig. 5, with
some detailed values shown in Table 5. For all nonstationary
percentages, the FEL shows the highest classification accuracy.
Furthermore, the accuracy drops off at a roughly linear rate
as the nonstationary percentage increases in contrast to the
exponential decay in accuracy demonstrated by standard MLP,
which is characteristic of catastrophic interference. Fig. 6

TABLE III

CLASSIFICATION ACCURACY FOR VARIOUS CATASTROPHIC

INTERFERENCE MITIGATION SCHEMES COMPARED WITH THE FEL

NEURAL NETWORK

Fig. 6. Classification region comparison between a FEL neural network
(bottom) and a standard MLP neural network (top). The primary clusters are
centered at (-2, 2) and (2, -2). The standard MLP loses the classification
region for both of the restricted clusters, whereas the FEL network only loses
the borders of the restricted clusters. Left side figures: results for the test set,
with green circles: correct classifications and red X’s: incorrect classifications.
Right side figures: entire input space and the classification that each network
would make for a point in each region.

provides more detail for a single-test run (with a nonstationary
percentage of 75%). The standard MLP loses all ability to
classify samples from the restricted clusters, whereas the FEL
network only misclassifies samples that lie near the edges of
the restricted clusters.

C. Ensemble Learning Nonstationary Gaussian Distribution
Task

To compare ensemble techniques, we evaluate various
schemes for composing multiple FEL neural networks into
an ensemble. Each ensemble is composed of seven FEL
neural networks, using the same parameters as in the single-
learner case. We compare JSD as a diversification term with
and without weighting the learners proportionally to their
estimated error. Furthermore, both a basic ensemble that uses
the mean value of member outputs and an ensemble trained
using NCL are considered. The negative correlation penalty
term used is γ = 0.5 (as in [4]), and the JSD term is
weighted using a convex with the MSE term, where γ = 0.8.
The temperature parameter in the estimated error weighting is
τ = 0.1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

COOP et al.: ENSEMBLE LEARNING IN FIXED EXPANSION LAYER NETWORKS FOR MITIGATING CATASTROPHIC FORGETTING 9

Fig. 7. Classification accuracy in ensembles of FEL networks applied
to a basic clustering task. Each line represents the mean classification
accuracy, with the shaded proportion representing the 95% confidence interval.
Nonstationary percentage refers to the percent of total training iterations that
are performed using only samples drawn from the primary clusters.

TABLE IV

CLASSIFICATION ACCURACY FOR VARIOUS ENSEMBLE TECHNIQUES

For each value of the nonstationary percentage, 100 inde-
pendent test runs are performed for each algorithm, and the
results used to determine the mean accuracy, standard devia-
tion, and the 95% confidence interval for the mean accuracy.

A plot of the accuracy obtained using an ensemble of FEL
neural networks is shown in Fig. 7, with some detailed values
shown in Table IV. Results from the ensemble technique
comparison show that significant accuracy gains can be made
using the FEL neural network in an ensemble setting. All
ensemble techniques perform significantly better than a single
learner, with the most significant accuracy differences occur-
ring at higher levels of nonstationarity. To examine the possible
performance of error estimated weighting, we investigate the
correlation between the estimated error and the actual error.
The results are shown in Fig. 8. The correlation level remains
significantly high across the entire range of nonstationarity
values and, correspondingly, the JSD ensemble using estimated
error weighting performs better than other approaches at
higher levels of nonstationarity.

Fig. 8. Correlation coefficient between the estimated error and the actual
error (used for error weighting).

Fig. 9. Comparison of the original 1024-D handwritten digits (top) and the
PCA reduced and reconstructed 128-D digits (bottom).

D. Nonstationary MNIST Classification Task With Four Digits

The previous tasks illustrate the viability of the FEL net-
work when considering the traditional domain over which
catastrophic interference is measured and when considering a
simple Gaussian classification problem. This task shows that
the FEL network is applicable to more complex tasks and that
the FEL network’s accuracy is significantly improved by the
addition of the feature-sign search algorithm.

This task involves the classification of digits taken from the
MNIST database of handwritten digits [14]. Digits 1, 2, 3,
and 4 are used for this task. The original MNIST digits are
32 × 32 pixel grayscale images, with each image consisting
of 1024 pixels taking on integer values from 0 (white) to
255 (black). We preprocess the MNIST data by shifting the
pixel values to be a real number between zero and one,
centering the data, and using principal component analysis
(PCA) to reduce the 1024-dimensional data to 128 dimensions.
This dimensionality reduction captures approximately 94% of
the variance of the original data. Through taking the Moore–
Penrose pseudoinverse of the principal component matrix,
we can reconstruct the reduced data to obtain a visual repre-
sentation of the amount of information present in the reduced
dataset. This representation is shown in Fig. 9.

To use the MNIST data to study the mitigation of
catastrophic interference, we use a similar approach to that
used in the Gaussian classification task. The training period
is divided into two phases as follows: 1) first phase—we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 10. Classification accuracy for the MNIST classification task when
using four digits. Each line represents the mean classification accuracy, with
the shaded proportion representing the 95% confidence interval. Nonstationary
percentage refers to the percent of total training iterations that are performed
using only two of the four possible digits.

Fig. 11. Comparison of the original 1024-dimensional handwritten digits
(top) and the PCA reduced and reconstructed 128-dimensional digits (bottom)
for the new digits included in the full MNIST test.

present training examples of all four digits and 2) second
phase—we only present training examples of two of the digits
(digits one and two). The nonstationary percentage represents
the proportion of training time spent in the second phase
(where only two of the digits are used for training).

We evaluate the performance of a standard MLP network,
a FEL network, and a FEL network using the feature-sign
search (FEL-FS) algorithm. Each network has 128 inputs for
the digit and four outputs representing the classification of that
digit.

For both FEL networks, the number of hidden neurons is
increased to 64, and the number of FEL neurons is increased
to 512. We also increase the number of hidden neurons in
the MLP network to 78. This number of hidden neurons is
chosen to give the MLP network the same amount of learning
resources as the FEL networks; each FEL network is able to
change the weights between the 128 input neurons and the
64 hidden neurons as well as the weights between the 512
fixed expansion layer neurons and the four output neurons,
giving the FEL networks 10,240 weights with which to store
information. The MLP network is able to change the weights
between the 128 input neurons and the 78 hidden neurons
as well as the weights between the 78 hidden neurons and
the four output neurons; this gives the MLP network 10,296
weights with which to store information.

The parameters for the MLP network and the FEL network
are the same as those used in the single-learner Gaussian
classification task. For the FEL-FS network, we use γ = 3.5.

TABLE V

CLASSIFICATION ACCURACY FOR THE MNIST CLASSIFICATION TASK

WHEN USING FOUR DIGITS. ∗ : DIFFERENCE BETWEEN THE VALUES IS

NOT STATISTICALLY SIGNIFICANT

TABLE VI

CLASSIFICATION ACCURACY FOR THE MNIST CLASSIFICATION TASK

USING ALL 10 DIGITS. ∗ : DIFFERENCE BETWEEN THE VALUES IS NOT

STATISTICALLY SIGNIFICANT

In addition, we do not apply the FEL weight initialization
technique to the FEL-FS network (leaving the input-hidden
weights randomly initialized as in the MLP network).

For each value of the nonstationary percentage, 100 inde-
pendent test runs are performed for each algorithm, and the
results used to determine the mean accuracy, standard devia-
tion, and the 95% confidence interval for the mean accuracy.

A plot of the accuracy of the networks tested is shown
in Fig. 10, with some detailed values being shown in
Table V. These results clearly show that both the FEL and the
FEL-FS networks perform significantly better than the stan-
dard MLP network on the more complex MNIST classification
task, whereas the FEL-FS network consistently outperforms
the basic FEL network. In addition, we can see that the perfor-
mance of the FEL-FS network has a more linear degradation
profile compared with the exponential degradation of the MLP
and FEL networks.

E. Nonstationary MNIST Classification Task With 10 Digits

The previous task demonstrated MNIST classification using
only the digits one, two, three, and four. The decision to
use only four classes is made in an effort to present a
more challenging classification task analogous to the earlier
Gaussian cluster classification task (in that both tasks required
classification into one of four possible classes). Of particular
interest is how the FEL and FEL-FS networks perform when
using all 10 of the digits within the MNIST dataset.

The previous nonstationary MNIST classification task is
repeated using all of the digits (0–9) from the MNIST dataset.
Reconstruction of PCA reduced samples of the additional
digits are shown in Fig. 11. Aside from increasing the number
of classes from four to ten, the same procedure, networks,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

COOP et al.: ENSEMBLE LEARNING IN FIXED EXPANSION LAYER NETWORKS FOR MITIGATING CATASTROPHIC FORGETTING 11

Fig. 12. Classification accuracy for the MNIST classification task when using
all 10 digits. Each line represents the mean classification accuracy, with the
shaded proportion representing the 95% confidence interval. Nonstationary
percentage refers to the percent of total training iterations that are performed
using only two of the four possible digits.

and parameters from the previous section are used for this
test. During the first phase of training, we present training
examples of all 10 digits. During the second phase of training,
we only present training examples of five of the digits. The
nonstationary percentage represents the proportion of training
time spent in the second phase (where only five of the digits
are presented).

For each value of the nonstationary percentage, 35 indepen-
dent test runs are performed for each algorithm, along with
the results used to determine the mean accuracy, standard
deviation, and the 95% confidence interval for the mean
accuracy.

The accuracy of the networks tested is shown in Fig. 12,
with some detailed values shown in Table VI. The inclusion of
all 10 digits renders this task much more challenging; accuracy
decreased for all three methods. The relative performance
of the FEL-FS, FEL, and MLP networks, however, remains
consistent with that of the four digit classification task.

VII. CONCLUSION

This paper introduced the FEL neural network, which was
uniquely designed to mitigate forgetting effects in parame-
terized supervised learning systems. This was achieved by
exploiting sparse encoding for latching long-term represen-
tations. Learning was inherently achieved in an incremental,
online manner, with modest requirements for additional mem-
ory and computational resources. In addition, the feature-sign
search algorithm can be used to significantly improve FEL
accuracy. When embedded in an ensemble of learners, the FEL
exhibited significantly higher accuracy in the presence of non-
stationary inputs, without the need for tuning any application-
specific parameters. One of the interesting areas for further
research was optimizing the confidence estimate to improve
overall ensemble performance. Partitioning the training set
such that each learner achieved higher accuracy in overlapping

regions of the input space seemed to be another promising
direction of investigation. The proposed framework can be
directly applied to many other real-world machine learning
tasks, such as time series prediction and anomaly detection.

VIII. ACKNOWLEDGMENT

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views and
conclusion contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
IARPA, the Department of the Army, the NSF, or the U.S.
Government.

REFERENCES

[1] B. Ans and S. Rousset, “Avoiding catastrophic forgetting by coupling
two reverberating neural networks,” Comptes Rendus l’Académie Sci.,
Ser. III, Sci. Vie, vol. 320, no. 12, pp. 989–997, 1997.

[2] B. Ans, S. Rousset, R. M. French, and S. Musca, “Self-refreshing
memory in artificial neural networks: Learning temporal sequences
without catastrophic forgetting,” Connect. Sci., vol. 16, no. 2, pp. 71–99,
2004.

[3] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, Aug. 1996.

[4] G. Brown and J. Wyatt, “Negative correlation learning and the ambiguity
family of ensemble methods,” in Multiple Classifier Systems. New York,
NY, USA: Springer-Verlag, 2003, p. 161.

[5] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[6] D. M. Endres and J. E. Schindelin, “A new metric for probability
distributions,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1858–1860,
Jul. 2003.

[7] M. Frean and A. Robins, “Catastrophic forgetting in simple networks:
An analysis of the pseudorehearsal solution,” Netw., Comput. Neural
Syst., vol. 10, no. 3, pp. 227–236, 1999.

[8] R. M. French, “Using semi-distributed representations to overcome
catastrophic forgetting in connectionist networks,” Connect. Sci., vol. 4,
nos. 3–4, pp. 365–378, 1992.

[9] R. M. French, “Catastrophic interference in connectionist networks: Can
it be predicted, can it be prevented?” in Advances in Neural Information
Processing Systems. Cambridge, MA, USA: MIT Press, 1994, p. 1176.

[10] R. M. French, “Using pseudo-recurrent connectionist networks to solve
the problem of sequential learning,” in Proc. 19th Annu. Cognit. Sci.
Soc. Conf., 1997, pp. 1–6.

[11] R. M. French and A. Ferrara, “Modeling time perception in rats:
Evidence for catastrophic interference in animal learning,” in Proc. 21st
Annu. Conf. Cognit. Sci. Conf., 1999, pp. 173–178.

[12] M. Hattori, “Dual-network memory model using a chaotic neural net-
work,” in Proc. Int. Joint. Conf. Neural Netw., 2010, pp. 1–5.

[13] G. E. Hinton and D. C. Plaut, “Using fast weights to deblur
old memories,” in Proc. 9th Annu. Conf. Cognit. Sci. Soc., 1987,
pp. 177–186.

[14] Y. Lecun and C. Cortes. (1998). The MNIST Database of Handwritten
Digits [Online]. Available: http://yann.lecun.com/exdb/mnist/

[15] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Advances in Neural Information Processing Systems,
vol. 19. Cambridge, MA, USA: MIT Press, 2007, p. 801.

[16] H. Lejeune, A. Ferrara, F. Simons, and J.H. Wearden, “Adjusting
to changes in the time of reinforcement: Peak interval transitions in
rats,” J. Experim. Psychol., Animal Behavior Process., vol. 23, no. 2,
pp. 211–231, 1997.

[17] J. P. Levy and D. Bairaktaris, “Connectionist dual-weight architectures,”
Lang. Cognit. Process., vol. 10, nos. 3–4, pp. 265–283, 1995.

[18] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Trans. Inf. Theory, vol. 37, no. 1, pp. 145–151, Jan. 1991.

[19] M. McCloskey and N. J. Cohen, “Catastrophic interference in con-
nectionist networks: The sequential learning problem,” Psychol. Learn.
Motivat., vol. 24, pp. 109–165, Jan. 1989.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[20] O.-M. Moe-Helgesen and H. Stranden, “Catastophic forgetting in
neural networks,” Dept. Comput. & Information Sci., Norwegian Univ.
Science & Technology (NTNU), Trondheim, Norway, Tech. Rep.,
2005.

[21] M. D. Muhlbaier, A. Topalis, and R. Polikar, “Learn++ .NC: Combining
ensemble of classifiers with dynamically weighted consult-and-vote for
efficient incremental learning of new classes,” IEEE Trans. Neural Netw.,
vol. 20, no. 1, pp. 152–168, Jan. 2009.

[22] I. Mukherjee, C. Rudin, and R. Schapire, “The rate of convergence of
AdaBoost,” in Proc. 24th Annu. COLT, 2011, pp. 537–558.

[23] N. C. Oza, R. Polikar, J. Kittler, and F. Roli, “Multiple classi-
fier systems,” in Proc. 6th Int. Workshop MCS, Seaside, CA, USA,
Jun. 2005.

[24] R. Ratcliff, “Connectionist models of recognition memory: Constraints
imposed by learning and forgetting functions,” Psychol. Rev., vol. 97,
no. 2, pp. 285–308, 1990.

[25] A. Robins, “Catastrophic forgetting in neural networks: The role of
rehearsal mechanisms,” in Proc. 1st New Zealand Int. Two-Stream Conf.
Artif. Neural Netw. Expert Syst., 1993, pp. 65–68.

[26] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,”
Connect. Sci., vol. 7, no. 2, pp. 123–146, 1995.

[27] S. Wang, K. Tang, and X. Yao, “Diversity exploration and negative
correlation learning on imbalanced data sets,” in Proc. Int. Joint Conf.
Neural Netw., Jun. 2009, pp. 3259–3266.

[28] S. Wang and X. Yao, “The effectiveness of a new negative correlation
learning algorithm for classification ensembles,” in Proc. IEEE Int. Conf.
Data Mining Workshops, Dec. 2010, pp. 1013–1020.

Robert Coop (S’07) received the B.S., M.S., and Ph.D. degrees in computer
science from the University of Tennessee, Knoxville, TN, USA, in 2008, 2011,
and 2013, respectively.

He is currently working in the area of intelligent inference algorithms for
risk assessment modeling. His current research interests include robust neural
networks learning algorithms with particular focus on dealing with real-world
and nonstationary data.

Aaron Mishtal (S’12) received the B.S. degree in computer science from the
University of Tennessee, Knoxville, TN, USA, in 2012, where he is currently
pursuing the Ph.D. degree with the Machine Intelligence Laboratory.

His current research interests include artificial general intelligence with a
focus on scalable perception and control algorithms and architectures.

Itamar Arel (S’92–M’03–SM’06) received the B.S., M.S., and Ph.D. degrees
in electrical and computer engineering in 1995, 1998, and 2003, respectively,
and the M.B.A. degree from Ben-Gurion University, Beersheba, Israel.

He is currently an Associate Professor with the Department of Electrical
Engineering and Computer Science, University of Tennessee, Knoxville, TN,
USA. From 2000 to 2003, he was with TeraCross, Inc., Ramat Gan, Israel,
where he was a Chief Scientist developing Terabit/sec switch fabric integrated
circuits. His current research interests include the intersection of neural
networks based deep machine learning and decision making under uncertainty.
Dr. Arel is a recipient of the U.S. Department of Energy Early CAREER
Award.

