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Abstract—In this paper we present the fixed expansion layer
(FEL) feedforward neural network designed for balancing plas-
ticity and stability in the presence of non-stationary inputs.
Catastrophic interference (or catastrophic forgetting) refers to
the drastic loss of previously learned information when a neural
network is trained on new or different information. The goal
of the FEL network is to reduce the effect of catastrophic
interference by augmenting a multi-layer perceptron with a
layer of sparse neurons with binary activations. We compare
the FEL network’s performance to that of other algorithms
designed to combat the effects of catastrophic interference and
demonstrate that the FEL network is able to retain information
for significantly longer periods of time with substantially lower
computational requirements.
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I. INTRODUCTION

The problem of catastrophic interference (also referred to as
catastrophic forgetting) in neural networks has been studied for
over two decades by researchers from many disciplines such as
machine learning, cognitive science, and psychology [8], [10].
In neural networks (and other connectionist architectures),
catastrophic interference is the process by which a network
"forgets" learned patterns upon being presented with new
patterns. One can expect a neural network to have an inherent
’learning capacity’ determined by the number of weights and
neurons it contains. When this capacity is reached, learning
new information will gradually interfere with a network’s
ability to recall existing information.

However, catastrophic interference is not caused by a net-
work having reached its learning capacity. Instead, once the
network has been trained on new patterns or is no longer
being adequately prestented with inputs drawn from its entire
observation space, drastic information loss occurs; the new
information catastrophically interferes with the learned infor-
mation even though there is plenty of learning capacity. Such
scnearios are commonly encountered when non-stationary
inputs are presented to the network.

Existing approaches for mitigating catastrophic forgetting
include ...

In this paper we propose a novel approach for mitigating the
fogetting phenomenon by augmenting existing MLP networks
witha a dedicated sparse layer of binary neurons. By selec-
tively activating neurons in this layer, latching of information
is enabled with minor degradation exhibited as new inputs
are provided to the network. The proposed approach is data-
driven and computationally modest, facilitating large-scale
implementations of such networks.

II. CONVENTIONAL MITIGATION OF CATASTROPHIC
FORGETTING

Many approaches to reducing the effect of catastrophic
interference have been proposed, with varying levels of suc-
cess. Notably, most exploration of the problem of catastrophic
interference has been within the domain of autoassociative
pattern learning, which has not addressed problems inherent
with more general function approximation [9]. The most
common schemes proposed in the literature can coarsely be
grouped into the following categories.

A. Rehearsal methods

Rehearsal methods were among the first approaches to
solving the problem of catastrophic interference; two such
methods are the rehearsal buffer model [10] and sweep
rehearsal [11]. Each method attempts to retain information
about previously learned patterns by creating a buffer of
some previously learned patterns; these buffered patterns are
then periodically used for training during the learning of
subsequent patterns. These early methods mitigated the effect
of catastrophic interference somewhat, but required persistent
storage of learned patterns.

B. Pseudorehearsal methods

Whereas rehearsal methods attempt to retain learned infor-
mation by storing and rehearsing a set of examples, pseu-
dorehearsal methods attempt to retain learned information
without the requirement of pattern storage [12]. Pseudopatterns
consisting of random input values are generated periodically
during training. The pseudopattern is fed into the network and
the network’s output is recorded. After some number of subse-
quent training iterations, a previously generated pseudopattern
is selected for pseudorehearsal. The pseudopattern is fed into
the network, and the previously recorded output is used as a
training target.

These pseudopatterns serve as approximate snapshots of
the network’s internal state at some time during the training
process. As training proceeds, the network’s internal state is
being adjusted in order to recognize the currently viewed
patterns. When pseudorehearsal is performed, the network’s
internal state is essentially being re-adjusted in order to
be more like the snapshot of its prior internal state. This
adjustment causes the network to be more likely to retain
prior information, thus combating the catastrophic interference
effects. However, the process of generating pseudopatterns
and periodically retraining over these pseudopatterns increases



the storage and computational requirements of the system.
Moreover, analysis suggests that, in some networks, the ef-
fectiveness of pseudorehearsal is reduced when used with
low-dimensional input or input patterns that are nearly (or
completely) orthogonal [2].

C. Dual methods

Dual methods address catastrophic interference through
attempting to separate that which is being learned from that
which has already been learned; these methods are charac-
terized by the explicit representation of short-term and long-
term memory. Dual weight (e.g. [6], [7]) methods maintain
two sets of weights for a single network architecture, while
dual network (e.g. [4], [1],[5]) methods utilize entirely separate
networks for the same purpose. While these type of methods
have been shown to be somewhat effective, the computational
and storage requirements are drastically increased; often these
algorithms additionally perform rehearsal or pseudorehearsal
(e.g. [6], [4], [5D).

D. Activation sharpening

Activation sharpening is inspired by the belief that catas-
trophic forgetting is a consequence of the overlap of pattern
representations within the neural network and can be addressed
by reducing this overlap [3]. The goal of activation sharpening
is to gradually develop semi-distributed representations of
patterns in the hidden layer of the network. This approach
modifies this traditional feedforward process; the input pattern
is fed forward, but then the activation of nodes in the hidden
layer is ’sharpened’ by increasing one or more of the hidden
nodes with the largests activation values and decreasing the ac-
tivation values of other hidden nodes. The difference between
the original and sharpened activation values is immediately
back-propagated to the input-hidden weights in order to train
the network to produce a sharpened activation in the future.
After this occurs, the input is fed forward and the error
backpropagated as usual. This method does not significantly
increase the memory requirements of the network, but it does
result in a 50% increase in the computational requirements due
to the additional half-backpropagation during each iteration.

ITI. THE FIXED EXPANSION LAYER FEEDFORWARD
NEURAL NETWORK

The motivation behind the fixed expansion layer (FEL)
neural network is similar to the motivation for activation
sharpening; the FEL network addresses the problem of repre-
sentational overlap in a neural network by adding an additional
‘expansion layer’ into the network (pictured in figure 1).
The weights for this layer are fixed at network initialization,
with values such that the ’dense’ signal contained in the
hidden layer is expanded into a more ’sparse’ signal con-
tained in the FEL. During the feedforward process, the FEL
neurons are ‘triggered’ in order to present a consistent sparse
representation of the input pattern to the output layer. The
sparseness of the FEL weights, combined with the triggered
FEL neurons, protect the hidden layer weights from portions
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Figure 1. The FEL network

of the backpropagation error signal; this prevents the network
weights from converging when learning new information and
mitigates the effects of catastrophic interference.

The fixed expansion layer can be used with many different
feedforward neural network algorthms; the FEL only requires
the additional steps of FEL weight initialization at network
creation time and FEL neuron triggering during the feedfor-
ward process.

A. Weight initialization

The weights between the hidden layer and the FEL (pictured
in figure 1) are set when the nerual network is created
and are not updated during the learning process. These FEL
weights must facilitate expansion of the signal contained
in the activations of the hidden layer neruons into a more
sparse representation of that signal in the FEL neurons. To
acheive this, each FEL neuron is only connected to a portion
of the neurons in the hidden layer. If each hidden neuron
were fully connected to each FEL neuron (as in traditional
feedforward neural network weighting), each FEL neuron’s
activation would be a function of the full hidden layer signal;
the FEL layer’s signal would be just as dense as that of the
hidden layer. We therefore select only a portion of the hidden
layer neurons to contribute to each FEL neuron.

To initialize the FEL weights, we first determine the number
of hidden layer neurons that contribute to each FEL neuron
(N¢) and the number of hidden layer neurons that will inhibit
the activation of each FEL neuron (Ng). For each FEL neuron,
we randomly select N¢ contributory neurons and assign them
a contributory weight (vo) of 1. We then select Ny inhibitory
neurons and assign them an inhibitory weight value (vg) of
—]"\’,—Z. The selection of contributory and inhibitory neurons
is performed such that each neuron in the hidden layer will
contribute and inhibit the same number of FEL neurons.

B. Neuron triggering

During training, only a small portion of the FEL neurons
(the ’triggered neurons’) have nonzero activation values. Any
hidden layer neuron connected to a triggered FEL neuron will



receive a corrective training signal and consequently update all
of its input layer weights; if all FEL neurons were triggered,
then all hidden neurons would receive a training signal, and all
input-hidden weights would be updated during each training
iteration. We trigger some number (V) of neurons that have
the largest activation value as well as some number (N_) of
neurons that have the smallest activation values. Intuitively,
this can be thought of as selecting the neurons that strongly
’agree’ or strongly ’disagree’ with the hidden layer signal.
These triggered neurons then have their activation value set to
a constant value (v4 or v_), and all other FEL neurons have
their activation value set to 0.

By setting the activation value of the triggered FEL neurons
to specific values (as opposed to using their actual activation
values), we are limiting the information that can be sent
between the hidden layer neurons and the output layer neurons.
In effect, we are dividing the learning process into two parts;
the hidden layer weights are adjusted in order to create the
sparse representation that will be most informative to the
output layer, and the output layer weights are adjusted in order
to interperet the sparse FEL signal into an accurate output.

IV. EXPERIMENTAL RESULTS
A. Test setup

We performed a cluster classification test using a non-
stationary training input. There are four clusters of two dimen-
sional points, where each cluster has a mean and standard de-
viation and samples for that cluster are drawn from a Gaussian
distribution. 50,000 training iterations are performed, followed
by 1,000 testing iterations. The neural network is given the
point coordinates as a two dimensional input, and produces
a four dimensional output representing its classification. This
problem is trivial when we train over samples drawn from
each distribution for the entire training period; all algorithms
tested are able to acheive 100% accuracy under this condition.

In order to test each algorithm’s ability to resist catastrophic
interference, we do not train over all four clusters during the
training process. We present sample from all four clusters dur-
ing the first portion of training, but then only present samples
from two of the clusters (the ’primary’ clusters) during the
rest of training. During this second portion of training, no
samples from the other two clusters (the ’restricted’ clusters)
are presented. Testing is still performed over all four clusters;
the goal is to determine whether or not the network is able to
retain information about all four clusters after being presented
samples from only two clusters. The proportion of training
that only uses two clusters (the ’non-stationary percentage’)
was adjusted in order to measure how well each algorithm

Table T
NEURAL NETWORK PARAMETERS

o All networks use 2 input neurons, 16 hidden layer neurons, and 4 output
neurons.

o For activation sharpening, the 2 hidden layer neurons with the largest
values were sharpened by a factor of oo = 0.001.

o Pseudorehearsal was performed by generating a new pseudopattern
every 1000 training iterations. Every 100 training iterations, a random
pseudopattern is selected and presented for training.
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The shaded portion represents the 95% confidence interval for the accuracy.
’Non-stationary percentage’ refers to the percent of the training that was performed
using only two of the four possible clusters (i.e. a non-stationary percentage of 0
implies 50,000 training iterations using all four clusters, a non-stationary percentage
of .75 implies that 12,500 iterations using all four clusters were performed followed
by 37,500 iterations using only two of the clusters, etc.).

Figure 2. Classification accuracy

the N, = 4 neruons with the largest activation value and the
N_ =1 neuron with the smallest activation value were used.
The positive trigger value was vy = % and the negative trigger
value was v_ = —1.

B. Results

For each value of the non-stationary percentage, 100 inde-
pendent test runs were performed for each algorithm, and the
results averaged in order to determine the mean accuracy, stan-
dard deviation, and the 95% confidence interval (o« = 0.05) for
the mean accuracy. Networks were initialized with the same
weights.

A plot of each network’s accuracy is shown in figure 2,
with some detailed values presented in table II. For all non-
stationary percentages, the FEL shows the highest classifica-

performed under varying amounts of interference. l Z’ [ Sta“fa(rod) NN | Pse“dlor;)h)earsal [ AC‘iva‘i"l“ (Soh)arpe“i“g [ FF;L((;IN l

We tested the fixed layer feedforward neural netwgrk aga'mst 035 T 052 (0.09) 0776 (0.089) 035 (0.08) 993 (0.06)
a standard feedforward neural network, a network using activa- 05 051 (0.02) 0.66 (0.10) 0.50 (0.01) 0.85 (0.09)
tion sharpening, and a network using pseudorehearsal. Details | 0.75 | 0.5000 (0.00) 0.58 (0.08) 0.50 (0.00) 0.79 (0.10)
of these network parameters are presented in table 1. ! 0.5 (©) 05 © 05 (0 05 (0)

% is non-stationary percentage.
For the FEL neural network, a FEL of 128 neurons was  Main value is mean accuracy, std. deviation in parenthesis.
used. Each FEL received input from half of the hidden layer
(N¢ = 4, Ng = 4), with contributory weights of v = 1 and

inhibitory weights of vy = —i. For the neuron triggering,

Table 11
CLASSIFICATION ACCURACY DETAIL



tion accuracy. Furthermore, the accuracy drops off at a roughly
linear rate as the non-stationary percentage increases; the
exponential decay in accuracy shown by the standard neural
network is characteristic of catastrophic interference.

V. CONCLUSION AND FUTURE WORK

conclusion:

Low resource usage, favorable accuracy
Future:

methods for: setting weights, node triggering
use in: ensemble methods
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