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Abstract

Cellular automata are systems that consist of a number of homogenous sub-systems

(referred to as cells). Cellular automata models are used in many different disciplines

and are capable of exhibiting many different types of physical, biological, or

information-theoretic behaviors. Within a cellular automaton, each cell is associated

with a particular state. A new generation of cells are created according to some

fixed transition rule, where the next state of a cell is determined based on the state

history of some set of cells in the system (referred to as that cell’s neighborhood).

For determinate systems, the state progression of a cellular automata is uniquely

determined by its initial state, neighborhood function, and transition function. Given

only the neighborhood function of a determinate cellular automaton, one can infer

its transition function by observing the state transitions that take place and building

a lookup table that defines the transition function. However, given only observations

of the state transitions, it is difficult to infer the neighborhood function that governs

the cellular automaton. This project implements a discrete event specification model

of a general cellular automaton, uses this simulation to generate a number of different

state transition trajectories, and uses an evolutionary algorithm to search the space

of possible neighborhood functions in order to find the neighborhood function that

was originally used to generate the trajectories. Results are presented that show

the intelligent search algorithm is significantly more efficient than brute force search

under most circumstances.
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Chapter 1

Introduction

A cellular automaton is a system composed of a number of homogeneous sub-systems

(referred to as cells). For a given cellular automaton, each cell is governed by the

same neighborhood and transition functions; the neighborhood function determines

the set of cells in a system whose state history has an effect on a given cell, and the

transition function computes the next state of a cell, given the states of all cells in its

neighborhood. It should be noted that the states of the cells in the neighborhood can

be from the previous time step or can be from many time steps in the past. Cellular

automata can model a large variety of different systems very efficiently. There are

many different examples in the literature of modeling systems as cellular automata

with beneficial effect [3, 6, 15].

Functional analysis of a system is the process of taking a set of observations

of a system’s behavior and trying to infer how components of that system affect

each other [7]. It is a non-trivial problem, with no solution in general. Applied to

cellular automata, the functional analysis task is equivalent to the task of identifying

the neighborhood function that governs the automaton using only observations of

the automaton in operation and no a-priori knowledge of the transition function

or neighborhood function used to generate the system. There are many practical

applications of an algorithm that can solve this problem. Cellular automata have
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successfully been used to model diverse systems such as biological processes [5]

and freeway traffic [11]. Given an efficient means of functionally analyzing cellular

automata, it may be feasible to examine biological data in order to find cells within a

tumor that affect the growth of the tumor as a whole, or to examine traffic patterns

and identify intersections that have an affect on the overall level of traffic in the

system.

There are two main goals for this project. The first goal is to create and implement

a simulation of a very general cellular automaton as a discrete event system (DEVS).

Discrete event systems consist of formal specifications of how a model behaves as it

receives external input and time passes [16], and they can be very efficiently simulated

by a number of different software packages (e.g. [12]). A general model of a cellular

automaton is implemented as a DEVS system; this allows for the simulation of cellular

automata regardless of details such as the dimensionality of the state that each of the

cells has or the particulars of the transition or neighborhood functions that govern

the automaton.

The second goal is to perform functional analysis on cellular automata by

examining simulation trajectories of the automaton and inferring the neighborhood

function that was used to create the system. An evolutionary algorithm based on

population-based incremental learning [1] which is particularly effective at doing this

is presented and implemented, and a number of tests to demonstrate the capabilities

of the algorithm are presented.

This paper is divided into 9 different chapters. In chapter 2, we examine

the discrete event system specification and provide an overview of the procedure

used to simulate a system defined using DEVS. Chapter 3 provides a general

description of the cellular automaton, including formalizing cellular automata as

DEVS models. In chapter 4 we describe the implementation of the first project

component, the simulation implementation. Chapter 5 presents the background of

functional analysis and lays the groundwork for the search algorithm. We then cover

the evolutionary search algorithm in chapter 6. The implementation for the search
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algorithm is presented in chapter 7, and experimental results are presented in chapter

8. Conclusions and notes regarding future work are presented in chapter 9.
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Chapter 2

Discrete Event System Specification

The Discrete Event System Specification (DEVS) formalism was used to model the

behavior of the cellular automaton for this project. DEVS is a formalism that

describes the behavior of models in a very general, robust fashion. Using this

formalism, models can be represented and simulated very efficiently.

2.1 DEVS Formalism

Formally, a DEVS model M is defined [16] as a tuple:

M =< X, Y, S, ta, δint, δext, δconf , λ > (2.1)

where

• X is the set of input events

• Y is the set of output events

• S is the set of possible states
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• ta is the time∗ advance function ta : S → R which, given the current state,

provides the time when the next internal transition will occur

• δint is the internal transition function δint : S → S which computes the next

state that a model will transition to in the absence of external input

• δext is the external transition function δext : S × Xb × R → S (where Xb is a

collection of input events) which maps the model’s current state, external input

events, and elapsed time since the last transition to the next state

• δconf is the confluent transition function δconf : S × Xb → S which is used to

resolve the conflict that arises when the model receives external input at the

same time that it would ordinarily undergo an internal transition

• λ is the output function λ : S → Y which provides the output of the current

state when an internal (or confluent) transition occurs

Models within a simulation can be connected to each other, in which case the output

from one model becomes the input for any connected models. Formally, in the case of

connected models, each model’s definition includes the set of couplings and translation

functions that map the model’s output set to the coupled model’s input set. Because

these details are not significant for this project, they have been omitted.

2.2 Simulating a model using DEVS

The process of simulating a DEVS model is fairly straightforward. Starting at time

t = 0, the process is as follows:

∗A note about time: Formally, DEVS uses a timebase t ∈ (R,Z). This is to allow for scheduling of

state transitions and to make bookkeeping easier when manually calculating or analyzing simulation

trajectories. For example, a model that received an input at time t = (1, 0) that triggered a state

transition would actually process this state transition at time t = (1, 1) in order to simplify event

scheduling. When using software to run simulations, this detail is usually hidden by the simulation

software; for simplicity, we omit this detail in this project report and treat the timebase as if it is

t ∈ R.
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1. The time of the next input (and the receiving model) is recorded as (Mext,text).

The time advance function (ta) of all models is computed, and the time of the

next internal transition (and the associated model) is recorded as (Mint, tint).

The model with the lowest time is selected for processing. In the event that

multiple models have identical times, they are processed sequentially.

2. For each selected model M, the time of the next internal transition (tint) and

the time of the next input event (text) are compared, then there are two loops

over the selected models that are performed.

3. The first loop over the models calculates the output for each M where tint ≤ text

using the output function (λ).† Any output generated by M is immediately

moved to any coupled models.

4. The second loop over the models computes the new state of each model.

(a) If M has no external input, the internal transition function (δint) is used

to compute the next state of M .

(b) If M has external input and no internal transition, the external transition

function (δext) is used to compute the next state of M .

(c) If M has external input and an internal transition, the confluent transition

function (δint) is used to compute the next state of M .

5. The state of M is updated and the cycle repeats until there is no further external

input to the simulation and all models have a time advance value of ta = ∞.

†Note that M is not given an opportunity to produce output in response to external inputs. In

situations where the model must produce immediate output in response to external input, this is

accomplished by transitioning to a transient state that immediately undergoes an internal transition

and produces the desired output.
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Chapter 3

The Cellular Automaton

The cellular automaton is a model of a system that is constructed of many

homogeneous sub-systems. Cellular automata have a number of practical applications

including representing thermodynamic systems, biological systems, and many other

physical and informational phenomena. There are a number of papers and books that

describe the different applications of cellular automata theory (e.g. [6, 15, 3]). For

the purposes of this project, we are primarily concerned with being able to generally

represent cellular automata and simulate the trajectory of a cellular automaton as

it undergoes the various internal transitions determined by the rules that govern the

system.

3.1 Defining Cellular Automata

A cellular automaton is a system that consists of a collection of homogeneous

sub-systems (referred to as cells) that interact with each other. Each cell has an

independent state, and at every time step each cell transitions to a new state based

on its previous state and the state of (some) other cells in the system. Here we present

a traditional formal definition of cellular automata, though it is worth noting that

there are a large number of differing formal specifications of cellular automata (e.g.

[14, 10, 4]).
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We can view a cellular automaton as being a system composed of K ∈ Z individual

cells. The state of a cell is represented by

a
(t)
i ∈ S (3.1)

where t ∈ Z refers to the system time∗, i ∈ [0, K−1] refers to the cell being considered,

and S is the set of all possible states that a cell could have. The overall state of the

cellular automaton at time t is the cross-product of all of the cells within it (
∏K−1

i=0 a
(t)
i ).

The cellular automaton’s state changes at each time step according to some

transition function F and neighborhood function N that is shared for each cell. So,

the next state of cell i is given by

a
(t+1)
i = F (N(i, t)) (3.2)

where F is the transition function of the form

F : SM → S (3.3)

and N is the neighborhood function of the form

N : (i ∈ [0, K − 1], t ∈ Z) → SM (3.4)

The neighborhood function specifies the set of cell states SM that have an impact

on the state of cell i at time t+ 1.

For example, in a system where the next state of cell i is only dependent on the

previous state of cell i, the neighborhood function could be defined as

N(i, t) = a
(t)
i (3.5)

∗In this project we consider only discrete-timed systems.

8



in which case M = 1, and F : S → S.

In a system where the next state of a system is dependent on the previous state of

that cell and all cells within a radius r, the neighborhood function could be defined

as

N(i, t) =

i+r
∏

k=(i−r)

a
(t)
(kmodK) (3.6)

(where
∏

refers to the cross-product) in which case M = 2r + 1.

If such a system had longer term temporal dependencies, and each cell’s next state

depended on the s previous states of each cell within a radius r, the neighborhood

function could be defined as

N(i, t) =
t

∏

j=t−s





i+r
∏

k=(i−r)

a
(j)
(kmodK)



 (3.7)

in which case M = s(2r + 1).

It should be noted that, in these examples, the neighborhood of each cell consists

of some contiguous block of cells determined by a temporal depth s and a spatial

radius r. Under systems where this is the case, determining the neighborhood is only

a matter of identifying s and r. In general, this cannot be assumed to be the case.

In the general case, one must identify each individual member of the neighborhood;

this adds a great deal of complexity to the neighborhood search problem.

3.2 DEVS Formalism

In expressing cellular automata in terms of the DEVS formalism, it is most convenient

to treat each cell as an individual model. Because of the uniformity of the simulation,

the actual model is fairly straightforward (as far as DEVS models go). For this

project, two differing formalisms were developed. The first version conforms more to

the DEVS conventions with regard to input and output message passing; it proved too

9



Table 3.1: Original DEVS Cell Model

Each cell is defined as a DEVS model Ci =< X, Y, S, ta, δint, δext, δconf , λ > where

• X = {s|s ∈ S}M , where M is the number of cells in the neighborhood of Ci

• Y = {s|s ∈ S}

• S ⊂ Z
D, where D is the dimensionality of the state vector, and each dimension

can take on one of a fixed number of possible values.

• ta = 1

• δint = δext = {}. Due to the fact that each cell always generates an output and
receives an external message from each cell in its neighborhood, only δconf is
ever triggered.

• δconf : When δconf is triggered, the cell has an input Xb that contains the state
of all cells in the neighborhood of Ci (i.e. Xb = N(i, t)). The cell then computes

its transition function and updates its current state such that a
(t+1)
i = F (Xb).

• λ = ati, as each cell broadcasts its current state at each time step. Note that
the output of a cell is only delivered to cells Ck that contain the broadcasting
cell in their neighborhood such that Ci is in the neighborhood N(k, t).

complex when dealing with systems that have variable-length temporal dependencies.

Both of these DEVS models are described here.

3.2.1 Original Formalism

The original approach to modeling cellular automata was to define each cell Ck as a

model that is coupled to all cells that include Ck in their neighborhood (i.e. all cells

Ci such that Ck is in the neighborhood N(i, t)). The time advance for a cell is a fixed

interval, and, due to the fact that each cell generates an output at each time step, the

only transition function that actually gets used is the confluent transition function.

The formal definition of this model can be found in table 3.1.

10



Table 3.2: Simplified DEVS Cell Model

Each cell is defined as a DEVS model Ci =< X, Y, S, ta, δint, δext, δconf , λ > where

• X = Y = {}

• S ⊂ Z
D, where D is the dimensionality of the state vector, and each dimension

can take on one of a fixed number of possible values.

• ta = 1

• δext = δconf = {}

• λ = {}

• δint : When δint is triggered, the cell looks up the state of all cells within its
neighborhood in the system table. The cell then computes its transition function
and updates its current state such that a

(t+1)
i = F (N(i, t)), and records the new

state in the system table.

3.2.2 Relaxed Formalism

The original formalism required that each cell keep track of the state of all cells in its

neighborhood. The states of the cells in the neighborhood were received as external

messages at each time step. Each cell also had to record which cells contained it as

a member in their neighborhood in order to broadcast its state. Due to this, the

bookkeeping for each cell quickly became a problem when considering neighborhoods

with temporal dependencies that spanned multiple time steps.

To address this problem, the DEVS model was relaxed slightly in that an external

table of the states of all cells in the system was created. The table recorded the

state of all cells in the system for as many time steps as needed; for example, if the

neighborhood for a cell contained the state of a cell n time steps ago then the table

would record the current state of the system as well as the previous n states. This

greatly simplified the model of a cell, as there was no need to actually have the model

output its state as long as the state was recorded in the system table. In addition, due

to the fact that cells were no longer passing messages back and forth, only internal

transitions would occur. The simplified DEVS definition can be found in table 3.2.
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Chapter 4

Simulation Implementation

In this project, the goal was to design and implement a system for simulating cellular

automata in general. Though the author did create a customized DEVS simulation

engine, it ended up being more prudent to use a pre-existing software library which

the author has worked with in the past. The simulation framework was created using

the ADEVS C++ library [12]. In implementing the cellular automata simulation, a

general representation of a cell, a cell space that contains multiple cells, a cell’s state,

neighborhood, and transition function was created. Implementation and technical

details are given here for these components and the simulation process.

4.1 Generalized Cell Model

The generalized cell model was created by sub-classing the ADEVS Atomic class,

which represents an atomic DEVS model. The GeneralCell class is responsible for

containing the state of a cell (further state detail is provided below in section 4.3) and

contains the implementation of the DEVS-related functionality for a cell (specified

in table 3.2). The DEVS functions are called during a simulation by the ADEVS

simulation engine.
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4.2 Generalized Cell Space

The generalized cell space was created by sub-classing the ADEVS CellSpace class.

The GeneralSpace class is responsible for containing each GeneralCell used in the

cellular automaton, tracking the state of the automaton (with the overall automaton

state being the cross-product of the state of each individual cell), and recording

the history table used for updating cell states (see section 3.2.2). The GeneralSpace

implementation is fairly simple and primarily deals with maintaining the history table.

The ADEVS CellSpace class handles the functionality required for a GeneralSpace to

contain multiple GeneralCell models.

4.3 Generalized State

To ease the process of simulating cellular automata with different possible state

representations, a generalized state class GeneralState was created and used in this

project. The GeneralState class is able to represent any state space made up of a

discrete number of dimensions that contain a discrete set of arbitrary values. Using

this class, one is able to define the dimensionality of a state to be any d > 0 ∈ Z,

the size of each dimension to be any nd > 0 ∈ Z, and the possible values of that

dimension to be any set of values sd = {sd0, s
d
1, ..., s

d
nd−1}, s

d
i ∈ Z.

This is internally handled by keeping track of d, creating an array of d integers

to track nd, and creating an array of d arrays of integers to track the actual values

possible for each state. These values are static and shared by each instance of a

GeneralState. Each cell then contains a GeneralState which has an array of d integers

Si, 0 < i ∈ Z < d − 1, where Si = k indicates that the i-th dimension of the cell’s

state has a value of sik.
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4.4 Generalized Neighborhood

Equation 3.4 describes the neighborhood function of a cellular automaton. This

neighborhood specifies, for a given cell i at a given time t (denoted by a
(t)
i ), what cell

states act as inputs to the transition function that determines the value of a
(t+1)
i . If

a cell k’s state at time s is in the neighborhood of a
(t)
i , then the state is contained

in the neighborhood function such that a
(s)
k is in the neighborhood N(i, t). It should

be noted that a neighborhood function is specified for the entire cellular automaton

and shared by each cell; the neighborhood does not differ from cell to cell within the

same automaton. To allow for representing cellular automata in general, we must be

able to represent any possible neighborhood.

The GeneralNeighborhood class accomplishes this. For a general neighborhood

to be represented, one must specify the maximum possible spatial radius ∆d and

maximum possible temporal distance ∆t such that a
(t−∆t)
i±∆d is in the neighborhood

N(i, t). Once that is specified, we can represent the neighborhood function N as a

matrix with ∆t rows and (2∆d+ 1) columns. This matrix contains a 1 for all entries

Njk where Njk = 1 → a
(t−j)
i−∆d−1+j is in the neighborhood N(i, t). This is similar to

how functional masks are treated (discussed later in section 5.1).

For example, using a temporal depth of ∆t = 4 and a spatial radius of ∆d = 4,

the matrix

N =

i− 4 i− 3 i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4

t 1 0 0 0 0 0 0 0 0

t− 1 0 0 0 0 1 0 0 0 0

t− 2 0 0 1 0 0 0 0 0 0

t− 3 1 0 0 0 0 0 0 0 0

(4.1)

would indicate that a
(t+1)
i = F (a

(t)
i−4, a

(t−1)
i , a

(t−2)
i−2 , a

(t−3)
i−4 ).

This is implemented in GeneralNeighborhood by specifying ∆d and ∆t, then using

an array of boolean values to track which cells are in the neighborhood. The two

14



dimensional matrix N is flattened into a one-dimensional array with (2∆d + 1)∆t

entries.

4.5 Generalized Transition Function

To calculate the trajectory of a cellular automaton, we must have a transition function

F : SM → S that computes the next state of a cell a
(t+1)
i from the M states in the

neighborhood N(i, t). This is accomplished through the GeneralTransitionFunction

class. The purpose of this class is to generate a random valid transition function F

that computes a resulting GeneralState given M GeneralStates as input.

This is implemented by creating a large lookup table recursively. To create a

general transition function that maps M GeneralStates consisting of D dimensions of

size nd, the following procedure is used:

1. The class is initialized with an array of void pointers function_table = NULL,

the current input i = 0, and the current dimension dimension d = 0.

2. The table is calculated using the create_func(input, dimension) function such

that function_table = create_func(i, d).

3. create_func(i, d) performs the following computations:

(a) If this is not the final recursive iteration (i.e. i < M − 1 or d < D − 1):

i. An array of void pointers vptr is allocated with room for nd pointers.

ii. For each possible input dimension value k ∈ [0, nd − 1], vptr[k] is set

recursively:

A. If this is the final dimension for the current input (i.e. d = D−1),

vptr[k] = create_func(i+ 1, 0)

B. Otherwise, vptr[k] = create_func(i, d+ 1)

(b) If this is the final recursive iteration (i.e. i = M − 1 and d = D − 1):
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i. An array of void pointers vptr is allocated with room for nd pointers.

ii. Each pointer vptr[k], k ∈ [0, nd − 1] is set equal to a new randomly

created GeneralState

(c) vptr is returned as the output of create_func

In this fashion, a lookup table is created. To calculate F , the process is initialized by

setting vptr = function_table. Then, the pointer corresponding to the value of each

dimension (for each input in the M inputs) is dereferenced such that vptr = vptr[k],

where k is the index of the value for the current input and dimension. Once all of

the inputs and dimensions have processed, vptr will point to a GeneralState s such

that F (S0, S1, ..., SM−1) = s.

4.6 Simulation Process

To generate a cellular automaton and simulate system trajectories, the following

process is used:

1. The program is initialized with the spatial radius ∆d, temporal depth ∆t,

number of cells (M) in the neighborhood (such that N = S0 ×S1× ...×SM−1),

and a seed for the random number generator being provided by the user.

(In the project’s implementation, such data is provided using command line

arguments.)

2. The GeneralState dimensionality D, the size of the each dimension nd, and

the possible values of each dimension sd = {sd0, s
d
1, ..., s

d
nd−1} are initialized

using user-specified parameters. (In the project’s implementation, such data

is provided in a header file and compiled into the program.)

3. A random GeneralNeighborhood containing M cells is generated.
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4. A GeneralSpace is created that contains all cells in the cellular automata (the

number of which is specified via a header file), and GeneralCells are instantiated

and added to the GeneralSpace.

5. An ADEVS simulation engine is created, and the GeneralSpace added to it.

6. The settings for the simulation and the generated GeneralNeighborhood are

saved for future analysis∗.

7. A user-specified number of system trajectories are calculated and saved

according to the following procedure:

(a) The state of each cell is randomly initialized.

(b) ∆t time steps are simulated without any state transitions in order to build

up the required history for the cell neighborhood and transition function.

(c) A user-specified number of time steps are simulated by calculating the next

state of each cell using the cell neighborhood and transition function.

(d) After each time step, the state of the system is saved for future analysis.

This procedure was used to generate the data used in the next section of the project,

which seeks to infer the functional relationships between cells (equivalent to inferring

the neighborhood definition for the cellular automata).

∗The transition function specification was originally saved also, but for large neighborhoods and

state definitions this proved to use too much disk space, so it is omitted. Note that it can be

regenerated by initializing the simulation with the same parameters and random seed.

17



Chapter 5

The General Systems Problem Solver

The goal of the second component of this project was to take the cellular automaton

trajectories that were simulated and infer the functional relationships that exist

within the cellular automaton. Specifically, the goal is to be able to determine what

neighborhood function N is being used by the automaton using only observations

of the system trajectories. Due to the fact that the cellular automata created are

deterministic, once the neighborhood function is known, the transition function F

that determines the next state of each cell a
(t+1)
i = F (N(i, t)) can be calculated

by observing the value of all the states in N(i, t) and the resulting state a
(t+1)
i and

building a lookup table.

This component of the project was largely inspired by Klir’s treatment of general

systems theory (covered in [7]) and the research in fuzzy inductive reasoning that was

later inspired by it (covered in [2]).

5.1 Functional Masks

The concept of a functional mask is identical to the neighborhood of a cell in a

cellular automaton, but applied to a more general system. A functional mask for

a system specifies the relationship between system variables by specifying which

variables are inputs and which are outputs that functionally depend on the values of
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those inputs. Using the same neighborhood from the example presented in equation

4.1, the equivalent functional mask could be represented as

M =

i− 4 i− 3 i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4

t+ 1 0 0 0 0 1 0 0 0 0

t −1 0 0 0 0 0 0 0 0

t− 1 0 0 0 0 −2 0 0 0 0

t− 2 0 0 −3 0 0 0 0 0 0

t− 3 −4 0 0 0 0 0 0 0 0

(5.1)

where the numbers n > 0 indicate the n-th functional output, and the numbers

m < 0 indicate the m-th functional input. This expresses the same relationship as the

neighborhood from before; functional masks are just more general in that they can

represent multiple outputs and apply to systems in general instead of just cellular

automata. For the purposes of this project, we can disregard this distinction and

represent cellular automata neighborhoods and functional masks in the same fashion.

Notationally, we use M(i, t) to refer to the set of cells that are treated as functional

inputs by mask M for the state of cell i at time (t + 1) (in the same manner that

N(i, t) refers to the true set of cells that functionally determine the next state of cell

i).

5.2 Possible Masks for a System

The problem that this project seeks to solve is that of inferring the functional mask

that governs a cellular automaton given only simulated trajectories of the automaton.

This is a non-trivial problem; when presented with only trajectories of the system,

we have no knowledge of the spatial radius and temporal depth of the neighborhood

used, nor do we know how many members are contained within the neighborhood.

For this project, we assume that we can place an upper bound on the spatial radius

and temporal depth of the masks we are willing to consider. If we constrain our mask
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search to masks of spatial radius d and temporal depth t, there are M = (2d + 1)t

potential mask members for the system. In this case, the number of possible masks

in this space is given by

C =
M
∑

m=1

(M !)

(m!)(M −m)!
(5.2)

For example, a system using d = 4 and t = 4 (which we investigate further in

sections 8.3.1 and 8.3.2) has M = 36 potential members and C = 68, 719, 476, 735

possible masks to choose from.

5.3 Evaluating Functional Masks

Given a functional mask M , we must be able to determine if the mask correctly

identifies the functional inputs and outputs for a given system. Specifically, when

using cellular automata, we want to know if M correctly captures the neighborhood

information that the cells use. If M is the correct mask for a cellular automaton,

then the next state of cell i is determined by the relationship a
(t+1)
i = F (M(i, t)) =

F (N(i, t)) which indicates that M(i, t) = N(i, t).

M is tested by iterating over the recorded simulation trajectories for the system

and determining if this relationship is functionally determinate. This is accomplished

by using the following test procedure:

1. Select a simulation trajectory, a simulation time t ≥ ∆t, and a cell i.

2. Record set of functional inputs given by I = M(i, t), and the resulting state of

cell i given by O = a
(t+1)
i . The functional relationship we are checking is given

by F (I) = O. We keep a table of the different values of I that have been seen,

and note the value of O that was associated with I.

3. Depending on if I has been seen before, the test has the following results

(a) If I has not been seen before, we record I → O in the table and consider

the test a success.
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(b) If I has been seen before, and it led to the same resulting state O, the test

is considered a success.

(c) If I has been seen before, but it led to a different resulting state O1 6= O,

the test is considered a failure. I → O is still recorded in the table, if it is

not already present.

To test a mask, we perform the above test on some or all of the available history and

keep track of how many successes and failures occur, as well as the frequency that an

input pattern I led to an output pattern O.

In this project, many different heuristics were used for comparing how one mask

performed compared to another. The heuristic that was eventually selected combines

the amount of the Shannon entropy of the system is that is eliminated by the

mask (the entropy reduction) and the frequency with which observations occur (the

observaion ratio) [2].

The Shannon entropy of one input I is

HI =
∑

∀O

p(O|I) log2 p(O|I) (5.3)

with the summation operating over each O that was associated with a particular I,

and p(O|I) is the conditional probability of output O occurring, given that input I

is observed. This probability is statistically estimated as

p(O|I) =
# of observations of I, then O

# of observations of I
(5.4)

The overall entropy of the mask is then

HM = −
∑

∀I

p(I)HI (5.5)
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where p(I) is the probability of an input occurring, statistically estimated as

p(I) =
# of observations of I

# of observations
(5.6)

The maximum possible entropy occurs when all outputs have the same probability

and is given by

Hmax = −
∑

∀I

p(i)
∑

∀O

1

nI

log2
1

nI

= −
∑

∀I

p(i) log2
1

nI

(5.7)

where nI refers to the number of outputs O that are associated with a particular I.

The entropy reduction of a mask is then calculated as

Hr(M) =











1.0− HM

Hmax

Hmax > 0

1 Hmax = 0

(5.8)

which gives the proportion of the entropy in the system observations eliminated

by the mask if the system has any entropy (i.e. Hmax > 0), and is identically equal

to 1.0 in the case that the system observations are determinate. Note that for the

purposes of evaluating a mask M , the ’observation’ of a system is equivalent to the

state of all input cells for the mask (i.e. the observation = M(i, t)). The correct

mask M(i, t) = N(i, t) will always have an entropy reduction of 1.0 due to the fact

that the observations under this mask are necessarily determinate, but the entropy

reduction is still a useful quantity when trying to select the ’better’ of two masks that

are not the correct mask. Hr(M) is a measure of how well M represents a determinate

functional relationship from the input to the output.

The other term involved in calculating the quality of a mask measures how often

observations occur. In cluster analysis, it has been asserted that each legal discrete

state should be observed at least five times in order to be considered statistically valid

[8]. Based on this, an observation ratio Or is used as an additional contributor to the

overall quality measure [9]:
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Or(M) =
5n5+ + 4n4 + 3n3 + 2n2 + n1

5nleg

(5.9)

where

• nleg is the total number of legal observations

• n1 is the number of observations that occurred only once

• n2 is the number of observations that occurred twice

• n3 is the number of observations that occurred three times

• n4 is the number of observations that occurred four times

• n5+ is the number of observations that occurred five or more times

So, if every observation occurs at least 5 times, Or(M) = 1. If each legal observation

only occurs once, Or(M) = 1
5
. Or can be used as a measure of how well represented

the input of M is in the observed data.

Using these two measures, we can present a measure of the overall quality of a

mask:

Q(M) = Hr(M) ∗Or(M) (5.10)

This measure can be used to compare different candidate masks, where the optimal

mask for a system is the one with the largest Q(M) value.
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Chapter 6

Intelligent Mask Search using

Evolutionary Algorithms

6.1 Overview of Evolutionary Algorithms

Evolutionary algorithms (often referred to as genetic algorithms) are a class of

algorithms which optimize a function by iteratively testing a number of candidate

solutions and using the performance of those solutions to direct the creation of the

next group of candidate solutions for testing. The general form of an evolutionary

algorithm is presented in table 6.1.

6.2 Population Based Incremental Learning

Population-based incremental learning (PBIL) is an evolutionary algorithm that

represents the population of possible solutions as a single vector of probabilities.

This differs from traditional evolutionary algorithms that maintain multiple unique

population members and has a number of advantages and disadvantages over

traditional approaches. Traditional evolutionary algorithms perform crossover and

mutation operations directly on individual population members; as a result, the
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Table 6.1: Evolutionary Algorithm Procedure

In general, an evolutionary algorithm seeks to optimize some function F by finding
an approximate solution x̂ such that x̂ ≈ argminxF (x) (or x̂ ≈ argminx − F (x) if
the intent is to maximize F ), where argminxF (x) , {x|∀yF (y) ≥ F (x)}.

1. An initial population Pt of candidate solutions x1,2,..,N−1 is generated for
generation t = 0.

2. Each population member is associated with a fitness fxi
= F (xi). The member

with the best fitness (with ’best’ indicating the highest or lowest fitness,
depending on whether the goal is maximization or minimization of F ) seen
so far is recorded as x̂.

3. A number of population members are selected to contribute to the next
generation according to the relative fitness of each member.

4. The selected members are used to generate the next population Pt+1 using the
recombination and mutation operations.

5. Recombination occurs by selecting some number of population members (the
’parents’) and generating a new population member (the ’child’) according to
the traits and fitness of the selected parents.

6. Mutation occurs by randomly changing the traits of a child. Typically mutation
only occurs with some low probability.

7. If x̂ is an acceptable solution (determined by some pre-defined tolerance level)
then the algorithm terminates. Otherwise, execution continues by looping back
to step 2.
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population has some difficulty maintaining a stable representation of valid solutions.

For further comparison of traditional evolutionary algorithms (and a much more

detailed description of the PBIL algorithm) readers can refer to [1].

6.2.1 Overview of Algorithm

PBIL represents a population with a single vector of probabilities P . For a mask with

M possible members, the vector will have a probability for each possible member (i.e.

P ∈ [0, 1]M); these entries specify the probability with which a population member

will have a particular bit set. A complete description of how the PBIL algorithm

proceeds is presented in table 6.2.

6.2.2 Approach

PBIL was applied to the mask search problem in the following fashion. The goal of

the search problem is to find the best possible functional mask that represents the

neighborhood used to define a cellular automaton, given only a number of simulation

trajectories created by that cellular automaton. To do this, a maximum allowable

spatial radius r and maximum allowable temporal depth d was specified; a population

member Xi for PBIL was defined as a (2r+ 1) ∗ d length binary array, where Xi is a

flattened representation of the neighborhood matrix with Xi(j) = 1 indicating that

a cell’s state is part of the neighborhood.

The PBIL algorithm was then run by generating a number of population members

Xi from the probability vector P , evaluating the fitness of each population members

(according to the process described in section 5.3), adjusting P , and repeating the

process. Theoretically, we would expect to see that the population members that

contained entries Xi(j) that correspond to the actual neighborhood N would have a

higher fitness, and therefore the values of P that correspond to the entries in N would

take on a higher probability than the other entries. The end result is that it would

become more and more likely for a population member to be generated such that it
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Table 6.2: PBIL Algorithm

1. Each element of P is initialized to some initial probability pinit.

2. A generation of population members is created according to equation

Xi =

{

1 ni < Pi

0 otherwise
(6.1)

where i ∈ [0,M − 1] and n is a M × 1 vector of uniformly distributed random
numbers in the range [0, 1].

3. The fitness of each population member is calculated according to equation 5.10

4. The population member with the highest fitness Xb and the member of the
population with the lowest fitness Xw are recorded. If Xb is the most-fit
population member seen thus far, it is recorded as the current best solution
X̂. (Note that if all members of the population have an identical fitness value,
the modification described in section 6.2.3 and table 6.3 comes into play.)

5. Recombination is performed by adjusting P such that each bit that differs
between Xb and Xw is made more or less likely according to the following
formula

Pi =











(1− α)Pi + α Xb
iX

w
i

(1− β)Pi Xb
iX

w
i

Pi otherwise

(6.2)

where α ∈ [0, 1] is the positive learning rate, β ∈ [0, 1] is the negative learning

rate, and Xa
i X

b
i indicates that bit i is present in Xa and absent in Xb.

6. Mutation is performed by randomly altering the values of some elements of P .
For each element Pi, mutation is performed by applying the following equation

Pi =











Pi ni > δ

(1− γ)Pi
1
2
δ < ni ≤ δ

(1− γ)Pi + γ 0 ≤ ni ≤
1
2
δ

(6.3)

where δ ∈ [0, 1] is the rate that mutations occur, γ ∈ [0, 1] is the degree that a
mutated value changes, and ni ∼ U(0, 1) is a random value uniformly distributed
in the [0, 1] range. This equation has the effect of mutating a value with the
probability δ and, of the mutations that occur, half will cause an increase
in probability proportional to γ and half will cause a decrease in probability
proportional to γ.

7. If X̂ is an acceptable solution (determined by some pre-defined tolerance) then
the algorithm terminates. Otherwise, execution continues by looping back to
step 2. 27



exactly matches N . In chapter 8 a number of experiments based on this procedure

are performed and analyzed.

6.2.3 Improving the PBIL Algorithm

A slight modification of the PBIL algorithm was developed for this project. In the

algorithm described in table 6.2, the probability vector P is adjusted each generation

according to the bits that differ between the best and the worst population member

from that generation. It was discovered that, for this particular problem, there

are many instances where an entire generation of population members can have an

identical fitness value. Typically, this would occur if all of the potential functional

masks being tested were too large; the size of the mask causes it to be very unlikely

that there will be functional conflicts and can cause all of the population members to

have identical fitness values. The solution to this particular problem was to introduce

a penalty adjustment that occurs in the event that the fitness values for a generation

are identical. In this case, P is adjusted such that more variation between the

population members is introduced. Further detail about the penalty adjustment is

given in table 6.3.

6.2.4 Drawbacks

One primary disadvantage of using the PBIL algorithm for functional mask searching

was identified. The PBIL algorithm generates candidate solutions to the mask search

problem (for masks of max possible length n) by generating a vector of n random

numbers uniformly distributed in the range [0, 1]. Depending on whether each random

number is less than Pi or not, the candidate solution will have bit i set or unset. For

small to medium size masks, this method is quite effective. However, for larger masks,

a problem with the PBIL algorithm becomes apparent. In particular, this algorithm

does not perform well in the case that there is a large number of possible mask

members n and a comparatively small number of actual mask members m.
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Table 6.3: PBIL Penalty Adjustment Modification

During the PBIL algorithm described in table 6.2, a special adjustment procedure
occurs whenever there is a generation of solution candidates that have an identical
fitness value. The goal is to adjust P such that more variation is introduced into the
population. This is accomplished by adjusting each element of Pi according to the
formula

Pi =











(1− φ)Pi ∀jX
j
i

(1− φ)Pi + φ ∀jX
j
i

Pi otherwise

(6.4)

where ∀jX
j
i indicates that all population members have bit i activated, ∀jX

j
i indicates

that all population members have bit i deactivated, and φ ∈ [0, 1] is a penalty
adjustment factor. This has the effect of making bits that are active in all population
members less likely to occur in the next generation, making bits that are inactive in
all population members more likely to occur in the next generation, and leaving all
other bits unchanged.

We can see why this occurs by examining the case where we are trying to find a

mask with a maximum spatial radius of r = 9, a maximum temporal depth of d = 9,

and m = 19 members (experimental results from this case can be found in section

8.3.4). In this case, the number of possible mask members n = (2r + 1)d = 171.

The population probability vector therefore has 171 entries. Since the population of

candidate masks is generated by randomly setting and unsetting bits according to the

probability vector, we can calculate the expected number of bits that will be set for

a population member by the formula

E[length] =
n

∑

i=0



i





n

i



 pi(1− p)n−i



 (6.5)

where





n

i



 is the binomial coefficient, and each probability in P is equal to p. If

p = 0.5, E[length] = 85.5, if p = 0.25, E[length] = 42.75, if p = 0.1, E[length] = 17,

and if p = 0.01, E[length] = 1.71.
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This gives us a bit of intuition regarding how the PBIL search algorithm behaves

for large numbers of possible mask members; assuming we start with P = Pinit =

0.5 in this case, we can expect that the average candidate solution will contain 86

neighborhood members. Considering that we use the process described in section

5.3 to evaluate these candidate solutions, we can expect that the algorithm will not

perform very well if the actual neighborhood for a system is very small compared to

the number of potential members of the neighborhood. If we test a potential mask

M by computing a
(t+1)
i = F (M) for all the available simulation history that we have

and checking for functional conflicts, we can see that defining F : S86 → S is unlikely

to have any conflicts even though the mask is not very optimal. So, from the very

beginning of the algorithm, we can expect that masks are likely to have similar fitness

values regardless of whether they contain the correct entries or not.

Even if we disregard the fact that the selectivity (the tendency of the algorithm to

prefer correct masks over incorrect ones) of the algorithm is poor, we can see another

problem arise with large mask sizes. Recall that the algorithm generates random

candidate solutions probabilistically according to the vector P . The only way for the

algorithm to find the single correct solution is for it to be randomly generated from

a realization of P . If all non-correct mask entries have a probability of p0 and all

correct mask entries have a probability of p1, the probability that the correct solution

will be generated is expressed by

p(correct mask) = pm1 (1− p0)
n−m (6.6)

From successful tests (e.g. those in sections 8.3.1, 8.3.2) we know that a typical

end-of-test value for the average correct mask entry is p1 = 0.5 and a typical value for

other mask entries is p0 = 0.15. However, for a test with n = 171 and m = 19, this

gives a p(correct mask) = 3.57 × 10−17; calculating the expected number of masks
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NM that must be generated before the correct one is generated as

E[NM ] =

∞
∑

i=1

(

i ∗ (1− p(correct mask))i−1 ∗ p(correct mask)
)

(6.7)

we see that for these values E[NM ] ≈ ∞! If we let p1 = .9 and p0 = .1, then we

obtain E[NM ] = 66, 700, 000. This indicates that, on average, we’d need to generate

approximately 67 million masks at those probability levels before the correct mask

would be generated. However, this is impossible to do in practice, as the probability

levels change after each generation. For the parameters used in this project, that

means the probability levels will change after every 20 masks generated.

So, we can see that one significant weakness of this algorithm is the case where we

have a large number of potential mask members but a small number of actual mask

numbers.
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Chapter 7

Mask Search Implementation

In this section, the details of the implementation of the procedures discussed in

chapters 5 and 6 are discussed.

7.1 Processing Simulation Data

Chapter 4 detailed the process of implementing and simulating systems of cellular

automata. This section discusses the process of reading and interpreting the data

recorded during those simulations. For practical reasons, the the implementation

of this portion of the project was treated as being completely independent of the

previous portion; the code was independently created in order to allow for using the

mask search implementation to process data created from other sources.

The fundamental class that handles the simulation data is the SimulationInstance

class. Given the details of the system size, neighborhood radius, neighborhood depth,

number of members in the neighborhood, and the random seed used to generate

the data, this class handles the task of finding and loading the data for each of

the simulation trajectories that were created for that system. (The details are

needed primarily to identify the directory where the data is stored and the structure

of the data files.) Having located all the sample files, each separate simulation

trajectory that was generated (stored in separate flat files) is associated with a
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SimulationTrajectory class, which in turn manages loading and reading the data

for that simulation trajectory. Each simulation trajectory is treated as a series of

SystemObservation elements; a SystemObservation consists of the state of each cell

in the system at a given time.

7.2 The System Mask

The SystemMask class was developed to handle the concept of a functional mask.

A SystemMask is specified by a spatial radius and a temporal depth; keeping track

of which cell states are and are not part of the functional mask is handled in the

same fashion as general neighborhoods (covered in section 4.4). A system mask is

always assumed to be applied to a given element at a given time, and specifies the

membership relative to that element and time. Given a SimulationTrajectory, it is

possible to apply a SystemMask to any element at any time equal to or greater than

the mask’s temporal depth. Applying a SystemMask in this fashion will yield a special

SystemObservation, where the 1st element of the SystemObservation is the state of

the element at that time, the 2nd element is the state of the 1st functional input

specified by that mask, the 3rd element is the state of the 2nd functional input, the

4th element is the state of the 3rd functional input, etc.

7.2.1 Determining the Quality of a System Mask (The Func-

tionHashTable)

To compute the quality of a mask (defined by equation 5.10), a mask is tested over

some number of different input/output mappings in order to determine the entropy

reduction of the mask, observation ratio of the mask, and if there are any functional

conflicts caused by the mask. A functional conflict is defined as a situation where

one set of input states is observed to lead to more than output state. To facilitate

this testing process, and in anticipation of the fact that the testing process is likely
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to be the bottleneck of the mask search procedure, it is desirable to have an efficient

method of recording the different input/output mappings that occur and detecting

functional conflicts. To accomplish this, the FunctionHashTable class was created.

Each SystemMask class has its own FunctionHashTable. The FunctionHashTable

implements a slight variation of Pearson’s hash algorithm [13]. For each SystemOb-

servation that represents an input/output mapping, a hash value is calculated from

the values of all the functional inputs in the mask. It is important to note (and was

discovered to be a bug present in early project implementations) that one must only

calculate the hash value of the functional inputs. If the functional output is also

used in the hash calculation then the ability to detect functional conflicts is severely

hampered by the fact that conflicting entries will most likely be stored in separate

locations in the hash table, and the conflict will be undetected. Once the hash value

is computed from the functional inputs, the value is used as an index into an array of

singly-linked lists. If there is not already an entry for that particular input pattern,

one is created and added to the end of the list (and the test is considered to be

a success). If there is only one entry for that input pattern and the entry has an

identical output pattern (i.e. the entry is a duplicate), then the test is considered

a success and the table is left unchanged. If there is a conflicting entry (one which

has an identical input pattern but different output pattern) then the entry is added

to the list, but the test is considered a failure. If there is both a conflicting and a

duplicate entry, the table is left unchanged and the test is considered to be a failure.

7.3 The Mask Search

The PBIL algorithm is implemented in the MaskSearch class. The operation of

MaskSearch is fairly straightforward, as it builds on the capabilities provided by

the SystemMask. The MaskSearch class initializes a probability vector for the PBIL

algorithm, generates a number of masks from that probability distribution, and tests
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these masks against the simulation instance that is currently loaded. The overall

function follows the algorithm described in tables 6.2 and 6.3.
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Chapter 8

Experimental Results

8.1 Experimental Procedure

Experiments were performed according to the procedure outlined here. The

parameters that defined the size of the neighborhood for a cellular automaton and the

number of members of that neighborhood were specified, and a number of simulation

trajectories for that cellular automaton were generated using the process described in

section 4.6. The experimental data was generated using the procedure in table 8.1.

Using this data, the PBIL mask search algorithm was run according to the procedure

outlined in table 8.2.

8.2 Data Collected

For each set of parameters tested, the number of generations required for each of

the n PBIL runs is recorded. From this data, we calculate the sample mean X̄n,

sample standard deviation Sn, and quartile statistics for the number of generations

required before the search algorithm terminated. The search algorithm terminated

if the correct functional mask (a functional mask that identified the exact cells used

in the neighborhood function that generated the system) or an equivalent mask (a

mask that, while not the neighborhood used to generate the system, is equally or less
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Table 8.1: Process for Generating Experimental Data

To test how the search algorithm performed when searching for a mask of a given
size, the following procedure was used to generate simulation data to use.

1. The neighborhood parameters are specified. This includes the maximum spatial
radius r, the maximum temporal depth d, and the number of cells that are
actually members of the neighborhood m.

2. A number of different test samples for these neighborhood parameters are
generated.

(a) A neighborhood N is randomly generated from the parameters specified,
and a randomly generated transition function F is created.

(b) A cellular automaton with 200 cells is generated using the neighborhood
N and transition function F .

(c) 100 different simulation trajectories for this cellular automaton are
generated.

i. The state of each cell in the automaton is randomly initialized.

ii. The cellular automaton is simulated for 100 time steps, with each state
recorded for later analysis.

Using this procedure, data was generated that allows for determining, in general, how
well the search algorithm performs on a neighborhood generated using the parameters
r, d, and m.
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Table 8.2: Process for PBIL Mask Search

Using the experimental data generated according to table 8.1, the following procedure
was used to test the performance of the PBIL mask search algorithm. The procedure is
performed for each test sample generated for a given set of neighborhood parameters.

1. The PBIL algorithm is initialized with the following parameters:

• Positive learning rate α = 0.01

• Negative learning rate β = 0.05

• Mutation rate δ = 0.005

• Mutation shift γ = 0.05

• Child count N = 20

• Evaluations per child E = 5000

• Initial probability Pinit = 0.5

• Penalty learning rate φ = 0.01

2. The PBIL algorithm is used to find the original (or an equivalent) mask
according to the procedure in table 6.2. During the evaluation of the candidate
solutions generated by the PBIL algorithm, E different test cases are selected,
and each potential mask is evaluated over the same set of E tests.

(a) The original mask is defined as being equal to the neighborhood used to
generate the cellular automaton. An equivalent mask is one that is not
the original mask, but has as few or fewer members than the original
mask and is equally able to deterministically represent the functional
behavior of the system. For example, if the original mask expressed the
system behavior as a

(t+1)
i = F (a

(t)
1 , a

(t)
2 , a

(t−1)
2 , a

(t−1)
3 ), but the definition

of the transition function is such that, for all of the available data from
that system, F (a

(t)
1 , a

(t)
2 , a

(t−1)
2 , a

(t−1)
3 ) = F (a

(t)
1 , a

(t)
2 , a

(t−1)
2 ) then it would be

possible (and preferable) for the PBIL algorithm to identify the mask as

M = a
(t)
1 × a

(t)
2 × a

(t−1)
2 instead of the original.

3. The value of the probability vector P as well as the best mask seen thus far is
recorded at each generation for later analysis.

4. Depending on the test, the PBIL algorithm is allowed to run until a mask is
found or until some maximum number of generations have been tested.
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Table 8.3: Results for r = 4, d = 4, m = 4

Generations Required (127 tests run)

Minimum 82
25th Percentile (Q1) 203.75

50th Percentile (Q2, median) 356
75th Percentile (Q3) 4,304

Maximum 1,055,752
Sample Mean 22,942.86

Sample Standard Deviation 104,804.44
Actual Mean (95% confidence interval using t-distribution) 22, 942.86± 584.33

complex than the correct mask and equally valid for defining the functional behavior

of the system given all of the available data). Using the sample mean and standard

deviation, we also can calculate a 95% confidence interval based on the Student’s

t-distribution. The true mean µ number of generations required by the PBIL mask

search algorithm for the set of parameters being tested has a 95% probability of being

within this interval.

8.3 Experimental Results

8.3.1 r = 4, d = 4, m = 4

To test how well the mask search procedure performed on these parameters, 127

different tests were performed according to the procedures in tables 8.1 and 8.2.

Each test was run until it was able to find the correct mask or an equivalent mask.

Of the 127 different tests run, 124 were able to find the correct mask and 3 found an

equivalent mask. The results are summarized in table 8.3 and figure 8.1.

8.3.2 r = 4, d = 4, m = 8

To test how well the mask search procedure performed on these parameters, 150

different tests were performed according to the procedures in tables 8.1 and 8.2.

Each test was run until it was able to find the correct mask or an equivalent mask.
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Figure 8.1: Results for r = 4, d = 4, m = 4
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Table 8.4: Results for r = 4, d = 4, m = 8

Generations Required (150 tests run)

Minimum 155
25th Percentile (Q1) 645

50th Percentile (Q2, median) 1,366
75th Percentile (Q3) 5,421

Maximum 300,235
Sample Mean 10,110

Sample Standard Deviation 31,139
Actual Mean (95% confidence interval using t-distribution) 10, 110± 160

Of the 150 different tests run, all were able to find the correct mask. The results are

summarized in table 8.4 and figure 8.2.

8.3.3 r = 6, d = 6, m = 4

To test how well the mask search procedure performed on these parameters, 150

different tests were performed according to the procedures in tables 8.1 and 8.2. Of

the tests run, 97 of these tests were able to find the correct mask in fewer than

100000 iterations; 12 tests were run for more than 100000 iterations until the correct

mask was found, and 41 tests were only run for 100000 iterations. The results are

summarized in table 8.5 and figure 8.3.
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Figure 8.2: Results for r = 4, d = 4, m = 8

(a) Generations Required
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Table 8.5: Results for r = 6, d = 6, m = 4

Generations Required (109 tests run until completion)

Minimum 441
25th Percentile (Q1) 1,112.5

50th Percentile (Q2, median) 2,466
75th Percentile (Q3) 24,589.25

Maximum 1,410,319
Sample Mean 79,848.39

Sample Standard Deviation 236,719.59
Actual Mean (95% confidence interval using t-distribution) 79, 848± 1, 425

It should be noted that, of 150 tests actually performed, only 109 were completed
within a reasonable amount of time. Therefore the statistics reported here are likely
somewhat biased to be smaller than the actual values.

Figure 8.3: Results for r = 6, d = 6, m = 4

(a) Generations Required
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Figure 8.4: Results for r = 9, d = 9, m = 19

(a) Probability Vector (b) Entries in Best Mask

8.3.4 r = 9, d = 9, m = 19

To illustrate the performance of the algorithm when dealing with large systems

(as previously discussed in section 6.2.4), 12 tests were performed according to the

procedures in tables 8.1 and 8.2. Each test was run for 100000 iterations and then

examined. During these runs, no tests were able to determine the correct mask.

Looking at the graphs in figure 8.4, one can see that the probability for the actual

mask members follows the same distribution as the probability of non-mask members.

From these results, we can infer that it is unlikely that the algorithm would ever find

the correct mask.

8.4 Analysis of Results

From the experimental results presented in section 8.3, we can see that the algorithm

effectively infers the functional mask that governs the behavior of cellular automata

in many situations. As described in section 6.2.4, the algorithm is not very effective

when dealing with large potential neighborhoods with relatively few actual members

(which can be seen from the results in section 8.3.4).

From the other tests, we can see that, in situations where the algorithm is able

to find the correct mask, it does so very efficiently. For the tests run with the

parameters r = 4 and d = 4, we calculated earlier in section 5.2 that there are
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N = 68, 719, 476, 735 different masks possible. Each test consists of 100 different

samples, with each sample consisting of a system with 200 elements being run for 100

time steps. This provides a total of T = 100× 200× (100− 4) = 1, 920, 000 different

examples of input/output mappings to use. Assuming that we performed a brute

force search by randomly generating a candidate mask and testing it over all possible

tests, we would have a 1
N

chance of generating the correct mask on the first try, a

1
N−1

chance on the second try, a 1
N−2

chance on the third try, etc... We can calculate

the expected number of masks that would have to be tested to be

E[NM ] =

N
∑

i=1

[

i ∗

i−1
∏

j=1

(

1−
1

N − j

)

∗
1

N − i+ 1

]

(8.1)

This quantity was calculated and found to be E[NM ] = 34, 359, 738, 373 ≈ N
2
. So,

on average using a brute force method, we can expect to have to test just over half of

the possible masks before the optimal one is found. Considering each full-length test of

a mask involves T = 1, 920, 000 evaluations, we expect to need E[NM ]T = 6.60×1016

actual evaluations before finding the optimal mask.

Using the algorithm presented in this project, we found the optimal mask for

{r = 4, d = 4, m = 8} in 300, 235 generations and needed 1, 055, 752 generations for

{r = 4, d = 4, m = 4} (for the worst-case tests). Considering each generation involves

creating 20 masks and performing 5, 000 evaluations for each one, 30, 023, 500, 000

evaluations were performed for {r = 4, d = 4, m = 8} and 105, 575, 200, 000

evaluations were needed for {r = 4, d = 4, m = 4}.

Computing the speedup as

S =
TB

TE

(8.2)

where TB is the number of evaluations needed for a brute force search, and TE is the

number of evaluations needed for our algorithm, we find that, in the worst performing

test run for {r = 4, d = 4, m = 8} and {r = 4, d = 4, m = 4}, we have a speedup of

2.20× 106 and 6.3× 105, respectively.
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Chapter 9

Conclusions

In this project, we created a very general implementation of a cellular automaton as

a discrete event system simulation and developed and implemented an algorithm for

discovering the neighborhood function of a cellular automaton given only simulated

trajectories of the system. A number of tests were run by generating simulation

trajectories and using the data to infer the functional mask with the population-

based incremental learning algorithm.

From the analysis in section 8.4, one can see that the algorithm presented has

some promise; in the situations where it is able to find the correct functional mask

that it does so much more effectively than a brute force search.

There is still room for improvement; the algorithm presented does not perform

well on systems that have large possible masks, and the existing implementation

of the algorithm could certainly stand to be optimized. The performance of the

implementation could also be vastly improved by making it multi-threaded and

running it on a massively parallel machine.
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