Mitigation of Catastrophic Forgetting in Recurrent Neural
Networks using a Fixed Expansion Layer

Robert Coop, student member, IEEE, and Itamar Arel, senior member, IEEE

Abstract—Catastrophic forgetting (or catastrophic interfer-
ence) in supervised learning systems is the drastic loss of
previously stored information caused by the learning of new
information. While substantial work has been published on
addressing catastrophic forgetting in memoryless supervised
learning systems (e.g. feedforward neural networks), the prob-
lem has received limited attention in the context of dynamic
systems, particularly recurrent neural networks. In this paper,
we introduce a solution for mitigating catastrophic forgetting
in RNNs based on enhancing the Fixed Expansion Layer
(FEL) neural network which exploits sparse coding of hidden
neuron activations. Simulation results on several non-stationary
data sets clearly demonstrate the effectiveness of the proposed
architecture.

I. INTRODUCTION

Catastrophic interference (known also as catastrophic for-
getting) is a well known characteristic of many parametric
learning systems where the exposure of the learning system
to new information results in severe loss of previously
learned information. This extreme loss of information cannot
be attributed to the inherent informational capacity of the
learning system (as determined by the amount of resources
available for learning), but rather is caused by the overlap
of representations of information within the learning system
(71, [8].

Many real-world applications, such as financial time series
analysis and climate prediction, involve data streams that are
either strictly non-stationary or can at best be considered
piecewise stationary. The situation can be further exacerbated
by time and resource constraints which rule out batch pro-
cessing and instead necessitate online, sequential learning.
These problem domains require algorithms which address
the stability-plasticity dilemma [11] and are able to find
a balance between the capacity to learn new information
and the ability to retain previously learned representations.
In this sense, the problem of catastrophic interference has
much in common with the task of learning in nonstationary
environments or learning under concept drift [4].

Recent studies have suggested that catastrophic interfer-
ence can also be observed in mammals. In experimental
studies, it has been demonstrated that long durations of time
between observations of stationary patterns can lead to an
excessive tendency to form associations between sensory
inputs and desired outputs (abnormal potentiation) at the
expense of weakening existing associations [[15]], [10].

Robert Coop and Itamar Arel are with the Min-Kao Department of
Electrical Engineering & Computer Science, The University of Tennessee,
Knoxville, Tennessee (email: {coop,itamar} @eecs.utk.edu).

Addressing this challenge has been the focus of numerous
studies in recent years. However, the majority of these
studies focused their attention on memoryless, or static,
systems rather than dynamical models. A classic example
of static models are multilayer perceptrons, which can be
viewed as parameterized models for mapping the input space
to an output space. In contrast, recurrent neural networks
employ a feedback signal to introduce memory in modeling
dynamical systems. This paper addresses the issue of miti-
gating catastrophic forgetting in recurrent neural networks by
expanding on prior work which was devised for feedforward
architectures [3]].

The rest of this paper is structured as follows. Section
reviews some of the existing schemes published in the
literature for mitigating catastrophic forgetting. Section
discusses the Fixed Expansion Layer (FEL) neural network,
which was recently proposed as means of addressing the for-
getting effects in feedforward architectures [3]], and describes
the enhancement of the FEL network in the context of an
RNN. In Section simulation results are presented while
in Section [V] the conclusions are drawn.

II. BACKGROUND

Notably, most mainstream exploration of the problem of
catastrophic interference has been within the domain of auto-
associative pattern learning, which has not specifically ad-
dressed problems inherent with classification or more general
function approximation [16]]. The following outlines the most
commonly utilized schemes proposed in the literature.

A. Alleviating Catastrophic Interference

Traditional approaches to the problem can be divided into
three different categories based on their operation: methods
that involve the rehearsal of patterns or pseudopatterns,
methods which use dual networks in order to store learned
information, and methods based on modifying the network’s
operation.

Rehearsal methods involve augmenting the actual train-
ing data with saved (or artificially generated) data during
training. Standard rehearsal methods set samples of data
aside during training and later reuse these samples in order
to prevent loss of information; sweep rehearsal [18] and
the rehearsal buffer model [17]] are two examples of these.
Pseudorehearsal uses patterns generated from the network
itself (known as pseudopatterns) during the rehearsal process
(e.g. [19], [, [9]). Random data is fed into the network, and
the resulting output is stored. Later, the same data is fed into
the network with the earlier recorded response being used

as a training target. These pseudopatterns serve as indirect
snapshots of the network’s internal state at some time during
the training process, with later rehearsal acting to re-adjust
the network in order to be more like the prior snapshot.
This adjustment causes the network to be more likely to
retain prior information, thus combating the catastrophic
interference effects.

Dual network methods use two neural networks in order
to separate the task of learning from the task of long-term
information storage (e.g. [12[], [lLl], [7]). These methods use
one network (the ‘learning’ network) for the training process
and then transfer information to a second network (the ‘mem-
ory’ network). Pseudopatterns are used in order to transfer
information from one network to another; during training the
memory network is trained with pseudopatterns generated
from the learning network in order to store information, and
during subsequent training the learning network is trained
with pseudopatterns generated from the memory network in
order to refresh previous information and prevent data loss.

Activation sharpening, a method based on the modification
of a network’s operation, is inspired by the belief that
catastrophic forgetting is a consequence of the overlap of
pattern representations within the neural network and can
be addressed by reducing such overlap [7]. The goal of
activation sharpening is to gradually develop semi-distributed
representations of patterns in the hidden layer of the network
by causing neurons within the hidden layer to ‘latch’ onto
specific regions of the input space. This approach modifies
the traditional feedforward process; the input pattern is fed
forward and the activation of neurons in the hidden layer
is ‘sharpened’ by increasing the activation of one or more
of the hidden neurons (selected by choosing the hidden
neurons with the largest activation values) and decreasing
the activation values of all the other hidden neurons. The
difference between the original and sharpened activation
values is immediately backpropagated to the input-hidden
weights (as if it was an error signal) in order to train the
network to produce a sharpened activation in the future.

B. Recurrent Learning of Temporal Sequences

The standard multilayer perceptron neural network does
not have the ability to approximate temporally-dependent
mappings between its input space and its output space. To
address this, Elman’s Simple Recurrent Network (SRN) [6]
utilizes ‘context’ neurons which form a representation of
the current state, as depicted in Figure [I] Following each
feedforward process, the values of the hidden neurons are
stored into the context neurons. These context neurons are
fed to the network, in addition to the external inputs, during
the subsequent time step. Using these memory signals the
network is able to capture temporal dependencies. SRNs,
and most gradient-based recurrent neural network models,
have difficulty with capturing long sequences, or functions
with long-term temporal dependencies, due to the ‘vanishing
gradient’” phenomenon [2]. Regardless, the non-stationary
nature of real-world data sequences typically fed to recurrent

Figure 1. The Simple Recurrent Network (SRN) architecture [6]. The
activation values of the hidden layer neurons at time (t) are treated as part
of the input vector at time (¢ + 1).

L —

CLLL)

GOOO000D

—— e P R

Figure 2. Fixed Expansion Layer Feedforward Neural Network

networks renders the task of accurately modeling processes
difficult.

III. THE FIXED EXPANSION LAYER NETWORK

The motivation behind the fixed expansion layer (FEL)
neural network, which was first introduced by the authors in
the context of feedforward neural networks [3|], is similar to
the motivation for activation sharpening: reducing the overlap
of pattern representations within the network. The FEL
network addresses the problem of representational overlap
by exploiting an augmented MLP architecture which includes
the addition of an expansion hidden layer to the network, as
depicted in Figure [2] The weights for this layer are fixed
during network initialization and remain unchanged during
subsequent network operations. As a result, the FEL frame-
work inherently supports an incremental, online learning
process and exploits sparse encoding to latch onto previously
learned input/output mappings.

During the feedforward phase, the FEL neurons are trig-
gered in order to present a consistent sparse representation of
the input pattern to the output layer, as illustrated in Figure

Input Hidden FEL | Output |

I Triggered FEL neuron I

e -

I Input signal restricted
Al

Figure 3. Feedforward signal flow in the FEL neural network

Input Hidden FEL Output

_ RO O

f Signal restricted unless FEL
neuron triggered

All hidden weights
still adjusted

|
I No adjustment to FEL weights I

| — |

Figure 4. Error back-propagation in the FEL neural network

Bl The sparsity of the triggered FEL neurons protects the
input-to-hidden layer weights from portions of the back-
propagated error signal (see Figure [)), thus preventing the
network weights from changing drastically when exposed to
new information, which mitigates the effects of catastrophic
interference. Sparsity thus serves as means of latching on to
older information by selectively gating weight update signal
propagation through the network.

Consistency of representations within the FEL neurons
is critical to the accuracy of the network; the network
cannot retain information if the dense signal from the hidden
layer is not sparsely encoded in a consistent fashion. This
requirement is the main factor to consider in deciding how
the activation values of the FEL neurons are to be calculated.

One approach to the FEL activation problem is to perform
a traditional feedforward operation and then to sparsify the
FEL activation values. Using the fixed weights and the
activation values of the hidden layer, activation values are
calculated for all FEL neurons. Once these values have been

Figure 5. The Recurrent Fixed Expansion Layer (rFEL) Network architec-
ture. The activation values of the hidden layer neurons at time ¢ are sparsely
encoded using the fixed weights, and the sparse encoding present in the fixed
expansion layer neurons is treated as part of the input vector at time ¢ + 1.

calculated, we heuristically determine which FEL neurons
contain the most significant information about the hidden
layer and zero out the values of the other FEL neurons.
This approach was investigated in [3]], but has a number of
drawbacks. Most significantly, heuristically determining the
FEL activation in this fashion requires a number of constant
values to be determined and can lead to significant parameter
tuning for each problem domain.

An improved approach is to ensure sparsity by minimizing
the L; norm of the fixed expansion layer neurons, while at
the same time retaining key information from the hidden
layer neurons. This provides a structured approach for cal-
culation of FEL activation values and ensures consistency of
representations within the FEL neurons. Moreover, such an
approach is equivalent to solving the following optimization
problem formulation:

min, ||y — Az|* + 7||z||1, (1

where y denotes the activation of the hidden layer, A is
the FEL weight matrix, x is the FEL activation (over which
the minimization is performed), and is a penalty constant
which acts to balance the desire for a sparse activation signal
and retention of information from the hidden layer.

This problem can be efficiently solved using the feature-
sign search algorithm introduced in [14]. This search algo-
rithm hinges on the fact that equation (I) can equivalently
be written as

N
ming ||y — Az[]> + 7Y |z,)

i=1
where N is the number of elements in z, and if we know
the signs of the elements in = then we can replace each of
the terms |z;| with either z; (if z; > 0), —z; (f 2; < 0),
or 0 (if ; = 0). Considering only nonzero coefficients,
this reduces () to a standard, unconstrained quadratic op-
timization problem, which can be solved analytically and
efficiently. The feature-sign search algorithm operates by

Feature-sign search algorithm

1: Initialize := 0, 6 := 0, and active set := {}, where 6; 6{ 1,0, 1} denotes sign(x;).

2: From zero coefficients of x, select i = arg max; ‘BHyaiAzH

Activate x; (add % to the active set) only if it locally improves the objective, namely:

1f | 2llu=Asl|®
If olly- s
ox;

3: Feature-sign step:

> ~, then set 0; := —1, active set := {i} U active set .

< —7, then set 0; := 1, active set := {i} U active set .

Let A be a submatrix of A that contains only the columns corresponding to the active set.
Let Z and 6 be subvectors of and 6 corresponding to the active set.

Fnew = (AT A)"1(ATy — ~6/2),

+407):

Perform a discrete line search on the closed line segment from & t0 Tpew:

Check the objective value at Zneq and all points where any coefficient changes sign.
Update & (and the corresponding entries in x) to the point with the lowest objective value.
Remove zero coefficients of Z from the active set and update 6 := sign(x).

4: Check the optimality conditions:

(a) Optimality condition for nonzero coefficients: M

+ ysign(z;) =0, Vo; #0

If condition (a) is not satisfied, go to Step 3 (without any new activation); else check condition (b).

(b) Optimality condition for zero coefficients: w

<%, Vz; =0

If condition (b) is not satisfied, go to Step 2; otherwise return z as the solution.

Table I
THE FEATURE-SIGN SEARCH ALGORITHM [14]]

maintaining an active set of potentially non-zero coefficients
in z and the sign (positive or negative) of these values;
all other members of x are assumed to be zero. Given an
active set, we can analytically solve @I); in addition, given
the corresponding minimization solution, an improved active
set can be obtained (if it exists).

Each such step reduces the objective function. It has been
shown that the feature-sign search algorithm converges to
a global optimum of the optimization problem (2) in a
finite number of steps [14]. Previous work (submitted for
publication) has shown that this improved FEL activation
method results in greatly increased accuracy. The algorithm
is shown in Table [I

A. The Recurrent FEL Network

The standard multilayer perceptron neural network does
not have the ability to approximate temporally-dependent
mappings between its input space and its output space. To
address this, Flman’s Simple Recurrent Network (SRN) [6]
utilizes ‘context’ neurons which form a representation of the
current state. Following each feedforward process, the values
of the hidden neurons are stored into the context neurons
(as depicted in Figure [I)). These context neurons are fed to
the network, in addition to the external inputs, during the
subsequent time step.

Formally, consider a multilayer perceptron which has
N input neurons [z1,Z2,...,2x] and M hidden neurons
[h1,ha, ..., hy] . To transform this MLP into a recurrent
network, context neurons are added to the input layer. The
M new context neurons [x},z5,...,x%,] will store the
prior value of the hidden layer neurons. The hidden layer
calculation for this recurrent network is given by

Z wj;ix; + Z wﬂ i 3)

where h(t) is the value of the j-th hidden neuron at time ¢
and w 1s the weight that the j-th hidden neuron assigns to
the - th context neuron. The values of the context neurons
x} are given by
t—1
o =Y €1, M])
where hé.t_l) is the value of the j-th hidden neuron from the
previous input at time ¢ — 1.

Applying the FEL technique to the SRN allows the system
to capture temporal dependencies. In this recurrent FEL
(rFEL) network, the expansion layer now acts to prevent
convergence of the weights between the context neurons and
the hidden layer neurons. This is done by gating the context
signal using an expansion layer, as depicted in Figure [5

Specifically, we define a new context signal calculated by
using the feature-sign search algorithm to solve

minco [0 = ACOI2 + 4]0)
where ¢(*) is the context signal at time ¢, A is a matrix of
the fixed expansion weights, h(*~1) is the vector of hidden
neuron activations for time (¢ — 1), and ~y is a constant
determining the relative importance between the sparsity of
c® and the fidelity of the signal reconstruction given by
Ac®),
Using this new context signal, Equation [3] becomes

hgt) Z wﬂxl + Z w]z 7 (6)

where O is the number of context neurons (i.e. the number
of dimensions of the vector ¢() as previously defined), c(t)
is the ¢-th context neuron’s value, and w - is the weight that
the j-th hidden neuron assigns to the - th context neuron.

IV. SIMULATION RESULTS

We performed several simulations in order to evaluate
the proposed recurrent FEL (rFEL) network’s ability to
mitigate catastrophic interference. Performance in each case
is compared to several other algorithms proposed in the
literature.

A. Auto-associative binary sequence reconstruction

Auto-associative binary sequence reconstruction can be
viewed as a sequence-based version of a traditional catas-
trophic forgetting task. Mainstream exploration of the prob-
lem of catastrophic interference has commonly been re-
stricted to the domain of auto-associative pattern learning
[L6]; this task compares the ability of a network to retain
previously captured sequences of observations after demon-
strating the learning of new sequences. In particular, the
capacity of networks to retain information about sequences of
patterns is evaluated, rather than that of a single presentation
for each pattern.

The auto-associative binary sequence reconstruction test
was performed as follows. A number of binary pattern
sequences were randomly generated, where each sequence
consisted of two binary patterns (composed of the values
—1 and 1). The objective is to learn to reconstruct the
first part of the sequence after the complete sequence is
observed. For example, given the binary patterns A; and
As, one training iteration would consist of A; being input in
to the network (with no training target being provided and
no backpropagation taking place), then Ay would be input
in to the network (along with the context signal from the
previous presentation of A;). After the presentation of A,
the goal for the network would be to output the value of Ajy;
A; would be provided as a training target and used in error
backpropagation only after the presentation of As.

This test was repeated for sequences using patterns con-
sisting of 16, 32, and 64 dimensions in order to measure
each algorithm’s ability to scale to more challenging settings.
First, the network is trained over a batch of 20 randomly
generated sequences. The network is repeatedly trained over
this batch until the mean squared error for the training set
reaches an acceptable level. For the 16-dimensional and 32-
dimensional tests, a threshold of 0.06 was used; for the 64-
dimensional test, this threshold was increased to 0.075 due to
the fact that not all networks were able to reach the 0.06 error
level. Once the network has learned the 20 base sequences,
a new sequence is presented to the network. The network is
trained using this intervening sequence, and then the mean
squared error over the original set of base items is measured
in order to determine how much of the original information
was retained.

This experiment was conducted using the rFEL network,
a network using pseudorehearsal, a network using activation
sharpening, a system using dual networks, and a standard
Simple Recurrent Network (SRN). For the pseudorehearsal,
activation sharpening, and dual networks we use SRNs as
the base network. All networks used 16 hidden neurons, a

o
3
|

o
o
1

L

Base Item Accuracy
o
b
|

L

o
i
1

FEL NN
Pseudorehearsal
Activation Sharpening
=——@— Dual Networks
............ Standard NN
L R B e T I o R
0 5 10 15 20 25 30 35 40 45 50
Number of Intervening Items

L

o
©
1

1

Figure 6. Binary sequence reconstruction: 16-dimensional pattern

Base Item Accuracy

| | == FEL NN
Pseudorehearsal
0.3+ Activation Sharpening
| | ===@=== Dual Networks
............ Standard NN
O B e e m e B
0 5 10 15 20 25 30 35 40 45 50
Number of Intervening ltems

Figure 7. Binary sequence reconstruction: 32-dimensional pattern

step size of 2-5 and were trained with standard stochastic
gradient descent. After the pseudorehearsal network was
successfully trained, 32 pseudopatterns were generated; a
pseudopattern was used for training after the introduction
of each new sequence. During training of the dual network
system, 20 pseudopatterns were created with the learning
network and used to transfer information to the memory
network. Once a new sequence was introduced, the learning
network was trained using 3 pseudopatterns generated by the
memory network. For activation sharpening, 8 neurons were
sharpened with a sharpening factor of 0.1, and the rFEL
network used a sparse expansion layer with 128 neurons and
v =2.5.

For each setting, 50 independent runs were conducted
from which the mean accuracy, standard deviation, and the
95% confidence interval for the mean accuracy were derived.
These values are shown in Figures|[6] [7} and[8} detailed results
for the 32-dimensional test are illustrated in Table [ll As can
be observed from these graphs, a pseudo-linear degradation is
exhibited by the recurrent FEL network, while performance

09 j
0.8 —
3
® 0.7
8
<
£ 06—
2
©
§ 05—
04—
of | m— FEL NN
Pseudorehearsal
03+ Activation Sharpening
| | ===@== Dual Networks
............ Standard NN
T T T T T T "~ T T T "1
0 5 10 15 20 25 30 35 40 45 50
Number of Intervening Items
Figure 8. Binary sequence reconstruction: 64-dimensional pattern
of Simple Pseudo- | Activation | Dual Recurrent
New Recurrent rehearsal | Sharpening | Networks | FEL
Items Network
10 0.7228 0.7253 0.7411 0.6626 0.8981
20 0.6031 0.6402 0.6267 0.5929 0.8623
30 0.5166 0.6016 0.5440 0.5542 0.8264
40 0.4507 0.5805 0.4791 0.5276 0.7971
50 0.4024 0.5675 0.4338 0.5151 0.7714
Table II

BINARY SEQUENCE RECONSTRUCTION: 32-DIMENSIONAL PATTERN
DETAIL. ENTRIES DENOTE THE MEAN ACCURACY OF THE NETWORK
OVER 50 INDEPENDENT TEST RUNS.

of other schemes follows a sharper degradation profile.

B. Non-stationary MNIST sequence classification task

The previous experiment demonstrated the viability of the
recurrent FEL network within the domain of auto-associative
memory of temporal sequences. The next test case was
devised in order to evaluate the ability of the rFEL network
to classify sequences of complex visual patterns, namely
involving the classification of images taken from the MNIST
database of handwritten digits [[13l]. The digits 1, 2, 3, and 4
were selected for this task.

The goal of this task is to correctly classify sequences con-
sisting of two of the four digits. Consequently, four different
sequences were considered: (1,3), (1,4), (2,3), (2,4). A
training iteration would consist of the presentation of the
digit 1, followed by a presentation of the digit 3 (along
with the context signal generated during the presentation
of the digit 1). After the digit 3 has been presented, the
network’s goal would be to classify this sequence; there are 4
outputs of the network, each corresponding to one class. The
classification decision is made by selecting the output with
the maximum value. For training purposes, a target vector is
presented which consists of a 1 for the correct class and -1
for all of the other classes (e.g. for the previous example the
training target would be [1 -1 —1 -1].

The original MNIST digits are 32x32 pixel grayscale

4
2
2

Figure 9. Sample MNIST sequences. Each vertical row is a sample
of a sequence used in the classification task, with the two digits being
presented sequentially. For example, one training sequence might consist of
the presentation of the digit 1 followed by the digit 3, which would be a
different class than the digit 1 followed by the digit 4.

images, with each image consisting of 1024 pixels taking
on integer values from 0 (white) to 255 (black). The MNIST
data was preprocessed by shifting the pixel values to be a
real number between O and 1, centering the data, and using
principal component analysis (PCA) to reduce the 1024-
dimensional data to 128 dimensions. This dimensionality
reduction captured approximately 94% of the variance of the
original data. By taking the Moore-Penrose pseudoinverse
of the principal component matrix, we can reconstruct the
reduced data in order to get a visual representation of the
amount of information present in the reduced dataset. Sam-
ples of the reconstructed sequences are depicted in Figure
9

When the sample distribution does not change during
the training period, all algorithms evaluated were able to
achieve over 90% accuracy. In order to employ the MNIST
data to study the mitigation of catastrophic interference, the
training sequences were presented such that the networks
were exposed to nonstationary inputs.

In order to study each algorithm’s ability to mitigate
catastrophic interference in the presence of non-stationarity,
the sample distribution was varied over the training period
such that samples were drawn from all classes of sequences
during the initial phase of the training process, followed by a
duration of time in which samples were drawn only from two
of the classes (i.e. ‘primary’ classes). During this latter phase
of the training, no samples from the other two classes (i.e.
‘restricted’ classes) were presented. Testing was performed
over both the primary and the restricted classes with the goal
being to determine the degree to which the network was capa-
ble of retaining information about the restricted classes after
being presented with multiple observations drawn only from
the primary classes. The proportion of training iterations
that pertained to the primary classes (i.e. the ‘non-stationary
percentage’) was varied in order to measure how well each
algorithm performed under different levels of interference.

For this task, a total of 8,000 training samples were
presented. During the first phase of the training process,
samples were drawn randomly from all classes with equal

— FEL

------------ Standard NN
Pseudo-Rehearsal
Activation Sharpening

=—@— Dual Networks

08

Classification Accuracy
o o
o 5 o 2
> & I &

o
o
a

o
o

T T T
0 0.1 02 03 0.4 05 06 07
Non-stationary Percentage

Figure 10. MNIST sequence classification accuracy

probability, while at the second phase of training, samples
were drawn only from the two primary classes. The restricted
sequences were (1,3), (1,4), and the primary sequences
were (2,3), (2,4).

The same algorithms used in the previous section were
applied in this experiment. All networks hosted 64 hidden
neurons, used a step size of 27° and were trained using
standard stochastic gradient descent. For the pseudorehearsal
algorithm, pseudopatterns were created and occasionally
used during the training process; following every 400 train-
ing iterations, 50 new pseudopatterns were generated and
added to the collection of pseudopatterns, and 25 random
pseudopatterns were drawn from the collection and used for
training. The dual network system was trained in a similar
fashion. Following every 400 training samples, 50 pseudopat-
terns were created and used to transfer information into
the memory network, then 100 pseudopatterns were created
and used to transfer information to the learning network.
For activation sharpening, 32 neurons were sharpened with
a sharpening factor of 0.001, and the rFEL network used
a sparse expansion layer with 512 neurons and v = 0.4;
the lower ~ value reflects the need for more contextual
information than in the previous task.

Each network was used in 35 independent runs; the results
were averaged and are shown in Figure [I0} The 95% confi-
dence intervals were calculated, but only the rFEL network’s
interval is shown in the plot in the interest of avoiding clutter.
The rFEL network performed statistically significantly better
than the other algorithms, but the difference in performance
between the other algorithms was not statistically significant.
The MNIST sequence classification task was more challeng-
ing for the other algorithms than originally anticipated, with
performance dropping rapidly after only a minor degree of
non-stationarity was introduced. For example, using a non-
stationary level of 0.06, 7,520 training samples from all
sequences were presented, with the reduced classes being
excluded from only the last 480 training samples. Under
these conditions, the Simple Recursive Network’s classifica-
tion accuracy dropped from its baseline accuracy of 0.8962

Recurrent FEL neuron affinity

Figure 11.

to 0.5324, while the rFEL network’s accuracy dropped from
0.9811 to 0.9347 over the same interval.

The motivation behind the FEL network is that the fixed
layer neurons can form a meaningful sparse representation
of the hidden layer signal. As such, it was expected that
different FEL neurons would consistently react to different
features within the input signal. To measure the FEL neuron
affinity, the following data was collected. An ‘affinity vector’
was stored for each FEL neuron. For each test sample, the
input signal was multiplied by the activation value of each
FEL neuron and added to that neuron’s affinity vector; if
the FEL neuron was not activated, no change was made to
its affinity vector. Once the evaluation process completed, the
affinity vectors represented a weighted sum of input values to
which the FEL neuron responded. By reconstructing a 32x32
pixel grayscale image from these weighted values (using the
procedure described earlier), we can visually observe the
input to which each FEL neuron responded. A collection
of these affinity vectors is presented in Figure [T1] It can be
seen that the FEL neurons consistently reacted in response to
specific patterns; one can observe varying levels of positive
and negative responses to the digits 1 and 2, and in multiple
cases the same neuron shows a positive response to one digit
and a negative response to the other digit. This provides
interesting insight into the actual representations captured by
the sparse encoding of the FEL layer, further supporting the
overall significant results observed in mitigating catastrophic
interference.

V. CONCLUSIONS

In this paper, a novel approach for mitigating catastrophic
forgetting in dynamic neural networks has been proposed.
The approach is based on an enhancement to the Elman
recurrent neural network, in which sparse coding of context
(feedback) neurons is employed using a fixed expansion
hidden layer. The revised RNN architecture exhibits signifi-
cant improvements in retaining long-term memory in various

non-stationary settings, while incurring a modest increase in
computational and storage requirements.

VI. ACKNOWLEDGMENT

This work was partially supported by the Intelligence
Advanced Research Projects Activity (IARPA) via Army
Research Office (ARO) agreement number W911NF-12-1-
0017, and by NSF grant #CCF-1218492. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, the
Department of the Army, the NSF, or the U.S. Government.

REFERENCES

[1] B. Ans and S. Rousset. Avoiding catastrophic forgetting by coupling
two reverberating neural networks. Comptes Rendus de I’Académie
des Sciences-Series IlI-Sciences de la Vie, 320(12):989-997, 1997.

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-
term dependencies with gradient descent is difficult. Neural Networks,
IEEE Transactions on, 5(2):157-166, 1994.

[3] R. Coop and I. Arel. Mitigation of catastrophic interference in neural
networks using a fixed expansion layer. In Circuits and Systems
(MWSCAS), 2012 IEEE 55th International Midwest Symposium on,
pages 726 —729, aug. 2012.

[4] Gregory Ditzler and Robi Polikar. Semi-supervised learning in
nonstationary environments. In Neural Networks (IJCNN), The 2011
International Joint Conference on, pages 2741-2748. 1IEEE, 2011.

[5] Jeffrey L Elman. Finding structure in time. Cognitive science,
14(2):179-211, 1990.

[6] J.L. Elman. Distributed representations, simple recurrent networks,
and grammatical structure. Machine Learning, 7(2):195-225, 1991.

[71 RM. French. Using semi-distributed representations to overcome
catastrophic forgetting in connectionist networks. Connection Science,
4(3/4):365-378, 1992.

[8] R.M. French. Dynamically constraining connectionist networks to
produce distributed, orthogonal representations to reduce catastrophic
interference. network, 1111:00001, 1994.

[9] R.M. French. Using pseudo-recurrent connectionist networks to solve
the problem of sequential learning. In Proceedings of the 19th Annual
Cognitive Science Society Conference, NJ, 1997.

[10] R.M. French and A. Ferrara. Modeling time perception in rats: Evi-
dence for catastrophic interference in animal learning. In Proceedings
of the 21st Annual Conference of the Cognitive Science Conference,
page 173-178, 1999.

[11] Stephen Grossberg. Nonlinear neural networks: Principles, mecha-
nisms, and architectures. Neural networks, 1(1):17-61, 1988.

[12] M. Hattori. Dual-network memory model using a chaotic neural
network. In Neural Networks (IJCNN), The 2010 International Joint
Conference on, page 1-5, 2010.

[13] Yann Lecun and Corinna Cortes. The MNIST database of handwritten
digits.

[14] H. Lee, A. Battle, R. Raina, and A.Y. Ng. Efficient sparse coding
algorithms. Advances in neural information processing systems,
19:801, 2007.

[15] H. Lejeune, A. Ferrara, F. Simons, and J.H. Wearden. Adjusting
to changes in the time of reinforcement: Peak interval transitions in
rats. Journal of Experimental Psychology: Animal Behavior Processes,
23(2):211, 1997.

[16] O.M. Moe-Helgesen and H. Stranden. Catastophic forgetting in neural
networks. 2005.

[17] R. Ratcliff. Connectionist models of recognition memory: Constraints
imposed by learning and forgetting functions. Psychological Review,
97(2):285, 1990.

[18] A. Robins. Catastrophic forgetting in neural networks: the role of
rehearsal mechanisms. In Artificial Neural Networks and Expert
Systems, 1993. Proceedings., First New Zealand International Two-
Stream Conference on, page 65-68, 1993.

[19] A. Robins and University of Otago. Artificial Intelligence Laboratory.
Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science, 7(2):123-146, 1995.

	Introduction
	Background
	Alleviating Catastrophic Interference
	Recurrent Learning of Temporal Sequences

	The Fixed Expansion Layer Network
	The Recurrent FEL Network

	Simulation Results
	Auto-associative binary sequence reconstruction
	Non-stationary MNIST sequence classification task

	Conclusions
	Acknowledgment
	References

